Skip to main content
Log in

Operating Characteristics of Semiconductor Quantum Well Lasers as Functions of the Waveguide Region Thickness

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The performance characteristics of semiconductor lasers based on quantum wells (QWs) are theoretically studied as functions of the thickness of the waveguide region [optical confinement layer (OCL)]. The maximum modal gain, optical-confinement factor (in QWs, OCLs, and emitters), threshold current density, electron and hole densities (in QWs and OCLs), internal optical loss (in QWs, OCLs, and cladding layers), internal differential quantum efficiency, currents of stimulated and spontaneous recombination and the output optical power of the laser are calculated as functions of the OCL thickness. It is shown that up to pump current densities of 50 kA/cm2 the dependence of the output power of the considered lasers on the OCL thickness is weak in the thickness range of 1.5–2.8 μm. This result is important for the development of high-brightness lasers, since such lasers use a wide waveguide to ensure low radiation divergence. It is shown that, at very high pump-current densities, the output power has a maximum as a function of the OCL width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2. 
Fig. 3. 
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. L. Hayashi, US Patent No. 3691476 (1972).

  2. G. Thompson and P. Kirkby, IEEE J. Quant. Electron. 9, 311 (1973).

    Article  ADS  Google Scholar 

  3. W. T. Tsang, Appl. Phys. Lett. 39, 786 (1981).

    Article  ADS  Google Scholar 

  4. M. D. Camras, N. Holonyak, Jr., M. A. Nixon, R. D. Burnham, W. Streifer, D. R. Scifres, T. L. Paoli, and C. Lindström, Appl. Phys. Lett. 42, 761 (1983).

    Article  ADS  Google Scholar 

  5. L. M. Dolginov, A. E. Drakin, P. G. Eliseev, B. N. Sverdlov, V. A. Skripkin, and E. G. Shevchenko, Sov. J. Quantum Electron. 14, 439 (1984).

    Article  ADS  Google Scholar 

  6. Zh. I. Alferov, I. N. Arsent’ev, D. Z. Garbuzov, V. P. Evtikhiev, O. V. Sulima, V. P. Chalyi, and A. V. Chudinov, Sov. Phys. Semicond. 18, 1281 (1984).

    Google Scholar 

  7. Zh. I. Alferov, D. Z. Garbuzov, S. V. Zaitsev, A. B. Nivin, A. V. Ovchinnikov, and I. S. Tarasov, Sov. Phys. Semicond. 21, 503 (1987).

    Google Scholar 

  8. D. Z. Garbuzov, A. V. Ovchinnikov, N. A. Pikhtin, Z. N. Sokolova, I. S. Tarasov, and V. B. Khalfin, Sov. Phys. Semicond. 25, 560 (1991).

    Google Scholar 

  9. L. V. Asryan and R. A. Suris, Semicond. Sci. Technol. 11, 554 (1996).

    Article  ADS  Google Scholar 

  10. A. A. Marmalyuk, Yu. L. Ryaboshtan, P. V. Gorlachuk, M. A. Ladugin, A. A. Padalitsa, S. O. Slipchenko, A. V. Lyutetskii, D. A. Veselov, and N. A. Pikhtin, Quantum Electron. 48, 197 (2018).

    Article  ADS  Google Scholar 

  11. L. V. Asryan and Z. N. Sokolova, J. Appl. Phys. 115, 023107 (2014).

    Article  ADS  Google Scholar 

  12. L. V. Asryan, S. Luryi, and R. A. Suris, Appl. Phys. Lett. 81, 2154 (2002).

    Article  ADS  Google Scholar 

  13. J. Piprek, Opt. Quantum Electron. 51, 60 (2019).

    Article  Google Scholar 

  14. E. A. Avrutin and B. S. Ryvkin, Semicond. Sci. Technol. 32, 015004 (2017).

    Article  ADS  Google Scholar 

  15. J. Piprek, Semiconductor Optoelectronic Devices—Introduction to Physics and Simulation (Academic, San Diego, 2003).

    Google Scholar 

  16. J. Piprek and Z. M. Li, Photon. Technol. Lett. 30, 963 (2018).

    Article  ADS  Google Scholar 

  17. X. Wang, P. Crump, H. Wenzel, A. Liero, T. Hoffmann, A. Pietrzak, C. M. Schultz, A. Klehr, A. Ginolas, S. Einfeldt, F. Bugge, G. Erbert, and G. J. Tränkle, Quantum Electron. 46, 658 (2010).

    Article  ADS  Google Scholar 

  18. H. Wenzel, P. Crump, A. Pietrzak, C. Roder, X. Wang, and G. Erbert, Opt. Quantum Electron. 41, 645 (2010a).

    Article  Google Scholar 

  19. A. Zeghuzi, M. Radziunas, H.-J. Wünsche, A. Klehr, H. Wenzel, and A. Knigge, Opt. Quantum Electron. 50, 88 (2018).

    Article  Google Scholar 

  20. D. A. Veselov, V. A. Kapitonov, N. A. Pikhtin, A. V. Lyutetskii, D. N. Nikolaev, S. O. Slipchenko, Z. N. Sokolova, V. V. Shamakhov, I. S. Shashkin, and I. S. Tarasov, Quantum Electron. 44, 993 (2014).

    Article  ADS  Google Scholar 

  21. D. A. Veselov, N. A. Pikhtin, A. V. Lyutetskii, D. N. Nikolaev, S. O. Slipchenko, Z. N. Sokolova, V. V. Shamakhov, I. S. Shashkin, V. A. Kapitonov, and I. S. Tarasov, Quantum Electron. 45, 597 (2015).

    Article  ADS  Google Scholar 

  22. Z. N. Sokolova, N. A. Pikhtin, I. S. Tarasov, and L. V. Asryan, in Proceedings of the 5th International Symposium on Coherent Optical Radiation of Semiconductor Compounds and Structures, J. Phys.: Conf. Ser. 740, 012002 (2016).

    Google Scholar 

  23. Z. N. Sokolova, D. A. Veselov, N. A. Pikhtin, I. S. Tarasov, and L. V. Asryan, Semiconductors 51, 959 (2017).

    Article  ADS  Google Scholar 

  24. Z. N. Sokolova, N. A. Pikhtin, and L. V. Asryan, J. Lightwave Technol. 36, 2295 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

The work was carried out according to the federal program of Ioffe Institute. L. V. Asryan thanks the US Army Research Office, grant no. W911NF-17-1-0432, for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. N. Sokolova or L. V. Asryan.

Ethics declarations

We declare that we have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sokolova, Z.N., Pikhtin, N.A., Slipchenko, S.O. et al. Operating Characteristics of Semiconductor Quantum Well Lasers as Functions of the Waveguide Region Thickness. Semiconductors 56, 115–121 (2022). https://doi.org/10.1134/S106378262201016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262201016X

Keywords:

Navigation