Skip to main content
Log in

Initial Stages of Growth of Semipolar AlN on a Nanopatterned Si(100) Substrate

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Scanning electron microscopy is used for studies of the initial stages of the formation of semipolar AlN (10\(\bar {1}\)1) and AlN (10\(\bar {1}\)2) layers during metal–organic vapor-phase epitaxy on a Si (100) substrate with a surface, on which a V-shaped nanostructure, whose elements are <100 nm in dimensions, is formed (a NP-Si(100) substrate). It is shown that, in the initial stage of epitaxy on the NP-Si(100) substrate, nuclei of AlN crystals are formed and then, depending on the crystallographic orientation of the V walls, crystals faceted by AlN (10\(\bar {1}\)1) or AlN (10\(\bar {1}\)2) planes are formed, correspondingly, on Si (111) or Si (111) misoriented in the [110] direction by 7°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. T. Wang, Semicond. Sci. Technol. 31, 093003 (2016).

    Article  ADS  Google Scholar 

  2. M. Yang, W. Wang, Y. Lin, W. Yangand, and G. Li, Mater. Lett. 182, 277 (2016).

    Article  Google Scholar 

  3. F. Scholz, T. Meisch, and K. Elkhouly, Phys. Status Solidi A 213, 3117 (2016).

    Article  ADS  Google Scholar 

  4. A. Bourret, A. Barski, J. L. Rouviére, G. Renaud, and A. Barbier, J. Appl. Phys. 83, 2003 (1998).

    Article  ADS  Google Scholar 

  5. N. Sawaki, T. Hikosaka, N. Koide, S. Tanaka, Y. Honda, and M. Yamaguchi, J. Cryst. Growth 311, 2867 (2009).

    Article  ADS  Google Scholar 

  6. T. Tanikawa, T. Hikosaka, Y. Honda, M. Yamaguchi, and N. Sawaki, Phys. Status Solidi C 5, 2966 (2008).

    Article  ADS  Google Scholar 

  7. J.-M. Liu, J. Zhang, W.-Y. Lin, M.-X. Ye, X.-X. Feng, D.-Y. Zhang, S. Dinga, Ch.-K. Xu, and B.-L. Liu, Chin. Phys. B 24, 57801 (2015).

    Article  Google Scholar 

  8. V. N. Bessolov, M. E. Kompan, E. V. Konenkova, and V. N. Panteleev, Tech. Phys. Lett. 46, 59 (2020).

    Article  ADS  Google Scholar 

  9. V. N. Bessolov, E. V. Konenkova, S. N. Rodin, D. S. Kibalov, and V. K. Smirnov, Semiconductors 55, 471 (2021).

    Article  Google Scholar 

  10. Q. Bao, T. Zhu, N. Zhou, S. Guo, and J. Luo, J. Cryst. Growth 419, 52 (2015).

    Article  ADS  Google Scholar 

  11. X. H. Liu, J. C. Zhang, J. Huang, M. M. Yang, X. J. Su, B. B. Ye, J. F. Wang, J. P. Zhangand, and K. Xu, Mater. Express 6, 367 (2016).

    Article  ADS  Google Scholar 

  12. H.-J. Leea, S.-Y. Baeb, K. Lekhalb, A. Tamuraa, T. Suzukia, M. Kushimotoa, Y. Hondab, and H. Amano, J. Cryst. Growth 468, 547 (2017).

    Article  ADS  Google Scholar 

  13. L. Zhang, J. Wu, F. Liu, T. Han, X. Zhu, M. Li, Q. Zhao, and T. J. Yu, CrystEngComm. (2021, in press). https://doi.org/10.1039/D1CE00040C

  14. V. K. Smirnov, D. S. Kibalov, O. M. Orlov, and V. V. Graboshnikov, Nanotechnology 14, 709 (2003).

    Article  ADS  Google Scholar 

  15. V. Bessolov, E. Konenkova, S. Konenkov, S. Rodin, and N. Seredova, J. Phys.: Conf. Ser. 1697, 012099 (2020).

    Google Scholar 

  16. A. N. Furs, Crystallogr. Rep. 64, 631 (2019).

    Article  ADS  Google Scholar 

  17. T. Liu, J. Zhang, X. Su, J. Huang, J. Wang, and K. Xu, Sci. Rep. 6, 26040 (2016).

    Article  ADS  Google Scholar 

  18. C. Bayram, J. A. Ott, K.-T. Shiu, Ch.-W. Cheng, Y. Zhu, J. Kim, M. Razeghi, and D. K. Sadana, Adv. Funct. Mater. 24, 4492 (2014).

    Article  Google Scholar 

  19. R. Liu, F. A. Ponce, A. Dadgar, and A. Krost, Appl. Phys. Lett. 83, 860 (2003).

    Article  ADS  Google Scholar 

  20. L. Huang, Y. Li, W. Wang, X. Li, Y. Zheng, H. Wang, and G. Li, Appl. Surf. Sci. 435, 163 (2018).

    Article  ADS  Google Scholar 

  21. X. G. Banal, M. Funato, and Y. Kawakami, Phys. Status Solidi C 6, 599 (2009).

    Article  ADS  Google Scholar 

  22. V. Jindala and F. Shahedipour-Sandvik, J. Appl. Phys. 105, 084902 (2009).

    Article  ADS  Google Scholar 

  23. V. N. Bessolov, E. V. Konenkova, S. A. Kukushkin, A. V. Osipov, and S. N. Rodin, Rev. Adv. Mater. Sci. 38, 75 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the company “Quantum Silicon, Ltd.” (Moscow, Russia) for putting at our disposal the nanopatterned Si(100) substrates. We are grateful to V.K. Smirnov for helpful discussions.

Funding

The study was supported in part by the Russian Foundation for Basic Research, project no. 20-08-00096.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Konenkova.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessolov, V.N., Konenkova, E.V., Orlova, T.A. et al. Initial Stages of Growth of Semipolar AlN on a Nanopatterned Si(100) Substrate. Semiconductors 55, 812–815 (2021). https://doi.org/10.1134/S1063782621100043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621100043

Keywords:

Navigation