Skip to main content
Log in

Effect of Barrier Contacts on Carrier Transport in Homogeneous GaAs Structures Doped with Deep Cr and EL2 Centers

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We report on the results of investigations of carrier transport in GaAs structures doped with the EL2 deep donor centers and Cr acceptor levels for ionizing radiation detectors and ultrafast photoelectric switches. Structures of three configurations: pin, nin, and pip, are examined. A system of differential equations for the carrier temperature and Poisson’s and continuity equations is solved using commercial software. It is found that, choosing the barrier-layer type, one can control the electric-field-strength uniformity in the structures. It is shown that the pip structures exhibit the best uniformity of the electric-field strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. V. Tyazhev, D. L. Budnitsky, O. B. Koretskay, V. A. Novikov, L. S. Okaevich, A. I. Potapov, O. P. Tolbanov, and A. P. Vorobiev, Nucl. Instrum. Methods Phys. Res., Sect. A 509, 34 (2003).

    Google Scholar 

  2. M. Rogalla and K. Runge, Nucl. Instrum. Methods Phys. Res., Sect. A 434, 44 (1999).

    Google Scholar 

  3. A. Cola, L. Reggiani, and L. Vasanelli, Semicond. Sci. Technol. 12, 1358 (1997).

    Article  ADS  Google Scholar 

  4. H. Zhao, P. Hadizad, J. H. Hur, and M. A. Gundersen, J. Appl. Phys. 73, 1807 (1993).

    Article  ADS  Google Scholar 

  5. R. P. Joshi and P. Kayasit, J. Appl. Phys. 86, 3833 (1999).

    Article  ADS  Google Scholar 

  6. G. M. Loubriel, F. J. Zutavern, A. Mar, M. W. O’Malley, W. D. Helgeson, D. J. Brown, H. P. Hjalmarson, and A. G. Baca, in Proceedings of the 11th IEEE International Pulsed Power Conference, June 29–July 2, 1997, Baltimore, MD, USA.

  7. C. M. Buttar, Nucl. Instrum. Methods Phys. Res., Sect. B 395, 1 (1997).

    Google Scholar 

  8. D. S. McGregor, R. A. Rojeskia, G. F. Knolla, F. L. Terry, Jr., J. East, and Y. Eisen, Nucl. Instrum. Methods Phys. Res. A 343, 527 (1994).

    Article  ADS  Google Scholar 

  9. R. Irsigler, R. Geppert, R. Göppert, J. Ludwig, M. Rogalla, K. Runge, Th. Schmid, M. Webel, and C. Weber, Nucl. Instrum. Methods Phys. Res. B 395, 71 (1997).

    Article  Google Scholar 

  10. M. Alietti, C. Canali, A. Castaldini, A. Cavallini, A. Cetronio, C. Chiossi, S. D’Auria, C. del Papa, C. Lanzieri, F. Nava, and P. Vanni, Nucl. Instrum. Methods Phys. Res. B 362, 344 (1995).

    Article  Google Scholar 

  11. I. A. Prudaev, S. N. Vainshtein, M. G. Verkholetov, V. L. Oleinik, and V. V. Kopyev, IEEE Trans. Electron Dev. 68, 57 (2021).

    Article  ADS  Google Scholar 

  12. K. Berwick, M. Brozel, C. Butiar, M. Cowperthwaite, and Y. Hou, MRS Online Proc. Libr. 302, 363 (1993).

    Article  Google Scholar 

  13. I. A. Prudaev and M. G. Verkholetov, Tech. Phys. Lett. 45, 566 (2019).

    Article  ADS  Google Scholar 

  14. I. A. Prudaev, V. L. Oleinik, T. E. Smirnova, V. V. Kopyev, M. G. Verkholetov, E. V. Balzovsky, and O. P. Tolbanov, IEEE Trans. Electron Dev. 65, 3339 (2018).

    Article  ADS  Google Scholar 

  15. Sentaurus Device User Guide. www.sentaurus.dsod.pl/manuals/data/sdevice_ug.pdf.

  16. I. A. Prudaev, M. G. Verkholetov, A. D. Koroleva, and O. P. Tolbanov, Tech. Phys. Lett. 44, 465 (2018).

    Article  ADS  Google Scholar 

  17. V. Y. Prinz and S. N. Rechkunov, Phys. Status Solidi B 118, 159 (1983).

    Article  ADS  Google Scholar 

  18. D. S. McGregor, R. A. Rojeski, and G. F. Knoll, J. Appl. Phys. 75, 7910 (1994).

    Article  ADS  Google Scholar 

  19. L. L. Bonilla, P. J. Hernando, and M. Kindelan, Appl. Phys. Lett. 74, 988 (1999).

    Article  ADS  Google Scholar 

  20. F. Piazza, P. Christianen, and J. Maan, Appl. Phys. Lett. 69, 1909 (1996).

    Article  ADS  Google Scholar 

  21. V. I. Gaman, Physics of Semiconductor Devices (Tomsk. Univ., Tomsk, 1989), Chap. 2, p. 67 [in Russian].

    Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 20-38-90037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Verkholetov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verkholetov, M.G., Prudaev, I.A. Effect of Barrier Contacts on Carrier Transport in Homogeneous GaAs Structures Doped with Deep Cr and EL2 Centers. Semiconductors 55, 705–709 (2021). https://doi.org/10.1134/S1063782621080200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621080200

Keywords:

Navigation