Skip to main content
Log in

Evolution of Electron Transport under Resistive Switching in Porphyrazine Films

  • ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

An analysis of the IV characteristics makes it possible to determine the mechanisms of conduction corresponding to different states of the flow channels upon resistive switching in porphyrazine films. A variation in the temperature, the structure of the dielectric matrix, and the type of majority charge carriers makes it possible to estimate the applicability of the model of conducting filaments for describing transport and determining the mechanisms of conduction for each state of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. F. Pan, S. Gao, C. Chen, C. Song, and F. Zeng, Mater. Sci. Eng. R 83, 1 (2014).

    Article  Google Scholar 

  2. D. Panda, P. P. Sahu, and T. Yu. Tseng, Nanoscale Res. Lett. 13, 8 (2018).

    Article  ADS  Google Scholar 

  3. V. K. Yarmarkin, S. G. Shul’man, and V. V. Lemanov, Phys. Solid State 50, 1841 (2008).

    Article  ADS  Google Scholar 

  4. J. C. Scott and L.-D. Bozano, Adv. Mater. 19, 1452 (2007).

    Article  Google Scholar 

  5. Y. Chen, D. Li, N. Yuan, J. Gao, R. Gu, G. Lu, and M. Bouvet, J. Mater. Chem. 22, 22142 (2012).

    Article  Google Scholar 

  6. T. V. Dubinina, K. V. Paramonova, St. A. Trashin, N. E. Borisova, L. G. Tomilova, and N. S. Zefirov, Dalton Trans. 43, 2799 (2014).

    Article  Google Scholar 

  7. D. Schlettwein, D. Woehrle, E. Karmann, and U. Melville, Chem. Mater. 6, 3 (1994).

    Article  Google Scholar 

  8. R. D. Gould, Coord. Chem. Rev. 156, 237 (1996).

    Article  Google Scholar 

  9. Ch. G. Claessens, Chem. Rev. 114, 2192 (2014).

    Article  Google Scholar 

  10. A. D. Kosov, T. V. Dubinina, N. E. Borisova, A. V. Ivanov, K. A. Drozdov, S. A. Trashin, K. de Wael, M. S. Kotova, and L. G. Tomilova, New J. Chem. 43, 3153 (2019).

    Article  Google Scholar 

  11. T. V. Dubinina, M. M. Osipova, A. V. Zasedatelev, V. I. Krasovskii, N. E. Borisova, S. A. Trashin, L. G. Tomilova, and N. S. Zefirov, Dyes Pigm. 128, 141 (2016).

    Article  Google Scholar 

  12. T. V. Dubinina, A. D. Kosov, E. F. Petrusevich, S. S. Maklakov, N. E. Borisova, L. G. Tomilova, and N. S. Zefirov, Dalton Trans. 44, 7973 (2015).

    Article  Google Scholar 

  13. M. S. Kotova, M. A. Dronov, T. V. Dubinina, and D. R. Khokhlov, Fiz. Obraz. VUZ. 21 (1S), 53 (2015).

    Google Scholar 

  14. M. S. Kotova, K. A. Drozdov, T. V. Dubinina, E. A. Kuzmina, L. G. Tomilova, R. B. Vasiliev, A. O. Dudnik, L. I. Ryabova, and D. R. Khokhlov, Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  15. D. Ielmini, Semicond. Sci. Technol. 31, 063002 (2016).

    Article  ADS  Google Scholar 

  16. D. Ielmini, IEEE Trans. Electron Dev. 58, 4309 (2011).

    Article  ADS  Google Scholar 

  17. I. Valov, R. Waser, J. R. Jameson, and M. N. Kozicki, Nanotechnology 22, 254003 (2011).

    Article  ADS  Google Scholar 

  18. M. P. Donzello, C. Ercolani, V. Novakova, P. Zimcik, and P. A. Stuzhin, Coord. Chem. Rev. 309, 107 (2016).

    Article  Google Scholar 

  19. C. G. Claessens, D. González-Rodríguez, M. S. Rodríguez-Morgade, A. Medina, and T. Torres, Chem. Rev. 114, 2192 (2014).

    Article  Google Scholar 

  20. S. Ambrogio, S. Balatti, S. Choi, and D. Ielmini, Adv. Mater. 26, 3885 (2014).

    Article  Google Scholar 

  21. B. I. Shklovskii, Sov. Phys. Semicond. 13, 53 (1979).

    Google Scholar 

  22. R. B. Vasiliev, M. N. Rumyantseva, L. I. Ryabova, and A. M. Gaskov, Semiconductors 43, 156 (2009).

    Article  ADS  Google Scholar 

  23. N. F. Mott and E. Davis, Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1971), Vol. 1.

    Google Scholar 

  24. U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, IEEE Trans. Electron Dev. 56, 193 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 20-32-70118.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Drozdov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drozdov, K.A., Krylov, I.V., Vasilik, V.A. et al. Evolution of Electron Transport under Resistive Switching in Porphyrazine Films. Semiconductors 55, 296–300 (2021). https://doi.org/10.1134/S1063782621030052

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621030052

Keywords:

Navigation