Skip to main content
Log in

Three-Component Zone-Melting Method: Modeling of the Concentration-Component Distribution in Single Crystals of Ge–Si Solid Solutions

  • FABRICATION, TREATMENT, AND TESTING OF MATERIALS AND STRUCTURES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The concept and theoretical basis of the three-component zone melting method is given for growing single crystals of semiconductor solid solutions using seeds from constituent components. In the Pfann approximation, the problem of the axial concentration distribution of components in Ge–Si single crystals grown at different values of the operating parameters such as the length of the melted zone and the composition of the initial macrohomogeneous rods of solid solutions is solved. Analysis of the obtained results determines the potentialities of the method and the optimal conditions for growing single crystals with given homogeneous and graded compositions in the entire continuous series of Ge–Si solid solutions. It is shown that the three-component zone-melting method is promising for the growth of single crystals of semiconductor solid solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Schilz and V. N. Romanenko, J. Mater. Sci.: Mater. Electron. 6, 265 (1995).

    Google Scholar 

  2. A. Barz, P. Dold, U. Kerat, S. Recha, K. W. Benz, M. Franz, and K. Pressel, J. Vac. Sci. Technol. B 16, 1627 (1998).

    Article  Google Scholar 

  3. C. Marin and A. G. Ostrogorsky, J. Cryst. Growth 211, 378 (2000).

    Article  ADS  Google Scholar 

  4. S. Adachi, J. Cryst. Growth 280, 372 (2005).

    Article  ADS  Google Scholar 

  5. T. A. Campbell, M. Schweizer, P. Dold, A. Cröll, and K. W. Benz, J. Cryst. Growth 226, 231 (2001).

    Article  ADS  Google Scholar 

  6. G. Kh. Azhdarov, Z. M. Zeynalov, Z. A. Agamaliyev, and A. I. Kyazimova, Crystallogr. Rep. 55, 716 (2010).

    Article  ADS  Google Scholar 

  7. A. Varilci, T. Kucukomeroglu, and G. Kh. Azhdarov, Chin. J. Phys. 41, 79 (2003).

    Google Scholar 

  8. G. Kh. Azhdarov, T. Kucukomeroglu, A. Varilci, M. Altunbaş, A. Kobya, and P. G. Azhdarov, J. Cryst. Growth 226, 437 (2001).

    Article  ADS  Google Scholar 

  9. N. V. Abrosimov, S. N. Rossolenko, W. Thieme, A. Gerhardt, and W. Schroder, J. Cryst. Growth 174, 182 (1997).

    Article  ADS  Google Scholar 

  10. I. Yonenaga, J. Cryst. Growth 275, 91 (2005).

    Article  ADS  Google Scholar 

  11. V. K. Kyazimova, Z. M. Zeynalov, Z. M. Zakhrabekova, and G. Kh. Azhdarov, Crystallogr. Rep. 51, 192 (2006).

    Article  ADS  Google Scholar 

  12. G. Kh. Azhdarov, Z. M. Zeynalov, and L. A. Huseynli, Crystallogr. Rep. 54, 152 (2009).

    Article  ADS  Google Scholar 

  13. I. Yonenaga and T. Ayuzava, J. Cryst. Growth 297, 14 (2006).

    Article  ADS  Google Scholar 

  14. P. Dold, A. Barz, S. Recha, K. Presse, M. Franzb, and K. W. Benza, J. Cryst. Growth 192, 125 (1998).

    Article  ADS  Google Scholar 

  15. Z. M. Zakhrabekova, Z. M. Zeinalov, V. K. Kyazimova, and G. Kh. Azhdarov, Inorg. Mater. 43, 3 (2007).

    Article  Google Scholar 

  16. S. Bok-Cheol, K. Kwang, and L. Hong-Woo, J. Cryst. Growth 290, 665 (2006).

    Article  ADS  Google Scholar 

  17. G. Kh. Azhdarov, Z. A. Agamaliev, and E. M. Islamzade, Crystallogr. Rep. 59, 442 (2014).

    Article  ADS  Google Scholar 

  18. Z. A. Agamaliyev, E. M. Islamzade, and G. Kh. Azhdarov, Crystallogr. Rep. 61, 327 (2016).

    Article  ADS  Google Scholar 

  19. M. Yildiz, S. Dost, and B. Lent, J. Cryst. Growth 280, 151 (2005).

    Article  ADS  Google Scholar 

  20. K. Nakajima, T. Kusunoki, Y. Azuma, N. Usami, K. Fujiwara, T. Ujihara, G. Sazaki, and T. Shishido, J. Cryst. Growth 240, 373 (2002).

    Article  ADS  Google Scholar 

  21. V. M. Glazov and V. S. Zemskov, Physicochemical Bases of Semiconductor Doping (Nauka, Moscow, 1967) [in Russian].

    Google Scholar 

  22. I. Yonenaga, J. Cryst. Growth 198–199, 404 (1999).

  23. P. G. Azhdarov and N. A. Agaev, Inorg. Mater. 35, 763 (1999).

    Google Scholar 

  24. I. Kostylev, J. K. Woodaste, Y. P. Lee, P. Klages, and D. Labrie, J. Cryst. Growth 377, 147 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Aghamaliyev.

Ethics declarations

The author declares no conflicts of interest.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghamaliyev, Z.A. Three-Component Zone-Melting Method: Modeling of the Concentration-Component Distribution in Single Crystals of Ge–Si Solid Solutions. Semiconductors 55, 283–288 (2021). https://doi.org/10.1134/S1063782621020032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621020032

Keywords:

Navigation