Skip to main content
Log in

Silicon Nanowire Parameter Extraction Using DFT and Comparative Performance Analysis of SiNWFET and CNTFET Devices

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The performance and scalability of silicon nanowire field-effect transistor (SiNWFET) and carbon nanotube field-effect transistor (CNTFET) with surround gate geometry were studied using such tools as material exploration and design analysis (MedeA) and device modeling and simulation SilvacoTCAD. The SiNWFET and CNTFET with gate-all-around (GAA) structure offer good gate electrostatic control, high On-current and better suppression of short-channel effects with complete encirclement of the device channel. Rather than using the bulk properties of silicon, estimation of properties silicon nanowire (SiNW) was made using MedeA VASP tool based on density functional theory (DFT). In this study, the device input (IDVGS) and output (IDVDS) have been analyzed and parameters like threshold voltage, IOn/IOff ratio, drain induced barrier lowering and sub-threshold slope extracted, and comparison is made between SiNWFET and CNTFET devices. The results point towards the DFT-based material parameter estimation to incorporate the quantum effects and use of SiNW/CNT-based GAA structure below 10 nm to meet scaling targets. The results suggest that the SiNWFET and CNTFET device with GAA geometry could be a better alternative to conventional MOSFETs and FinFET for numerous high-performance and low-power device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. P. Jacob, R. Xie, M. G. Sung, L. Liebmann, R. T. P. Lee, and B. Taylor, Int. J. High Speed Electron. Syst. 26, 1740001 (2017).

    Article  Google Scholar 

  2. H. Sakaki, Jpn. J. Appl. Phys. 19, L735 (1980).

    Article  ADS  Google Scholar 

  3. B. Singh, P. B. Pillai, and D. Kumar, Mater. Res. Express 7, 015916 (2020).

    Article  ADS  Google Scholar 

  4. D. S. Holmes, E. DeBenedictis, R. L. Fagaly, P. Febvre, D. Gupta, A. Herr, A. L. de Escobar, N. Missert, and O. Mukhanov, IEEE International Roadmap for Devices and Systems (IEEE, 2018).

    Google Scholar 

  5. E. Sicard, hal-01558775 (2017).

  6. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006).

    Book  Google Scholar 

  7. M. Lundstrom and Z. Ren, IEEE Trans. Electron Dev. 49, 133 (2002).

    Article  ADS  Google Scholar 

  8. E. Gnani, S. Reggiani, M. Rudan, and G. Baccarani, IEEE Trans. Nanotechnol. 6, 90 (2007).

    Article  ADS  Google Scholar 

  9. H. Kaur, S. Kabra, S. Bindra, S. Haldar, and R. S. Gupta, Solid State Electron. 51, 398 (2007).

    Article  ADS  Google Scholar 

  10. P. Ghosh, S. Haldar, R. S. Gupta, and M. Gupta, Microelectron. J. 43, 17 (2012).

    Article  Google Scholar 

  11. R. Gautam, M. Saxena, R. S. Gupta, and M. Gupta, J. Comput. Theor. Nanosci. 9, 602 (2012).

    Article  Google Scholar 

  12. H. Iwai, K. Natori, K. Kakushima, P. Ahmet, A. Oshiyama, K. Shiraishi, J. Iwata, K. Yamada, and K. Ohmori, in Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices SISPAD, 2010, p. 63.

  13. A. Khakifirooz, O. M. Nayfeh, and D. Antoniadis, IEEE Trans. Electron Dev. 56, 1674 (2009).

    Article  ADS  Google Scholar 

  14. M. H. Moaiyeri and F. Razi, J. Comput. Electron. 16, 240 (2017).

    Article  Google Scholar 

  15. S. Mothes and M. Schröter, IEEE Trans. Nanotechnol. 17, 1282 (2018).

    Article  ADS  Google Scholar 

  16. A. D. Franklin, M. Luisier, S.-J. Han, G. Tulevski, C. M. Breslin, L. Gignac, M. S. Lundstrom, and W. Haensch, Nano Lett. 12, 758 (2012).

    Article  ADS  Google Scholar 

  17. A. Diabi, A. Hocini, S. Mouetsi, and D. Khedrouche, J. Comput. Electron. 16, 593 (2017).

    Article  Google Scholar 

  18. L. Zhang, C. Ma, J. He, X. Lin, and M. Chan, Solid State Electron. 54, 806 (2010).

    Article  ADS  Google Scholar 

  19. H. Iwai, Microelectron. Eng. 86, 1520 (2009).

    Article  Google Scholar 

  20. T. Ohno, K. Shiraishi, and T. Ogawa, Phys. Rev. Lett. 69, 2400 (1992).

    Article  ADS  Google Scholar 

  21. T. K. Chiang, Solid State Electron. 53, 490 (2009).

    Article  ADS  Google Scholar 

  22. D. Sharma and S. K. Vishvakarma, Solid State Electron. 86, 68 (2013).

    Article  ADS  Google Scholar 

  23. S. D. Suk, K. H. Yeo, K. H. Cho, M. Li, Y. Y. Yeoh, S.-Y. Lee, S. M. Kim, E. J. Yoon, M. S. Kim, C. W. Oh, S. H. Kim, D.-W. Kim, and D. Park, IEEE Trans. Nanotechnol. 7, 181 (2008).

    Article  ADS  Google Scholar 

  24. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964).

    Article  ADS  Google Scholar 

  25. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  Google Scholar 

  26. W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).

    Article  ADS  Google Scholar 

  27. K. Capelle, Braz. J. Phys., A 36, 1318 (2006).

    Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  29. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  30. J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992).

    Article  ADS  Google Scholar 

  31. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  32. E. Wimmer, M. Christensen, V. Eyert, W. Wolf, D. Reith, X. Rozanska, C. Freeman, and P. Saxe, J. Korean Ceram. Soc. 53, 263 (2016).

    Article  Google Scholar 

  33. V. Chaudhary, P. Katyal, A. Kumar, S. Kumar, and D. Kumar, in Recent Trends in Materials and Devices (Springer, 2017), p. 65.

    Google Scholar 

  34. J. G. Lee, Computational Materials Science: An Introduction (CRC, Boca Raton, FL, 2016).

    Google Scholar 

  35. C.-S. Lee, E. Pop, A. D. Franklin, W. Haensch, and H.-S. Wong, IEEE Trans. Electron Dev. 62, 3061 (2015).

    Article  ADS  Google Scholar 

  36. C.-S. Lee, E. Pop, A. D. Franklin, W. Haensch, and H.-S. P. Wong, IEEE Trans. Electron Dev. 62, 3070 (2015).

    Article  ADS  Google Scholar 

  37. B. P. Haley, G. Klimeck, M. Luisier, D. Vasileska, and A. Paul, J. Comput. Electron. 8, 124 (2009).

    Article  Google Scholar 

  38. G. Klimeck, M. McLennan, M. S. Lundstrom, and G. B. Adams III, in Proceedings of the 2008 8th IEEE Conference on Nanotechnology (2008), p. 401.

  39. S. Ahmed, G. Klimeck, D. Kearney, M. McLennan, and M. P. Anantram, Int. J. High Speed Electron. Syst. 17, 485 (2007).

    Article  Google Scholar 

  40. R. Hajare, C. Lakshminarayana, G. H. Raghunandan, and C. Prasanna Raj, Microsyst. Technol. 22, 1121 (2016).

    Article  Google Scholar 

  41. H. C. de Honincthun, H.-N. Nguyen, S. Galdin-Retailleau, A. Bournel, P. Dollfus, and J. P. Bourgoin, Phys. E (Amsterdam, Neth.) 40, 2294 (2008).

  42. C. W. Murray, S. C. Racine, and E. R. Davidson, J. Comput. Phys. 103, 382 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  43. S. K. Sinha and S. Chaudhury, Mater. Sci. Semicond. Process. 31, 431 (2015).

    Article  Google Scholar 

  44. K. Cheng, S. Seo, J. Faltermeier, D. Lu, T. Staert, I. Ok, A. Khakifirooz, R. Vega, T. Levin, J. Li, J. Demarest, C. Surisetty, D. Song, H. Utomo, R. Chao, et al., in Proceedings of the Symposium on VLSI Technology (VLSI-Technology) (2014), p. 1.

  45. J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).

    Article  ADS  Google Scholar 

  46. A. D. Franklin, S. O. Koswatta, D. B. Farmer, J. T. Smith, L. Gignac, C. M. Breslin, S.-J. Han, G. S. Tulevski, H. Miyazoe, W. Haensch, and J. Tersof, Nano Lett. 13, 2490 (2013).

    Article  ADS  Google Scholar 

  47. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer Science, New York, 2012).

    Google Scholar 

  48. ATLAS, A 3D Device Simulator from SILVACO (Singapore, 2014).

  49. G. Iannaccone, G. Curatola, and G. Fiori, in Simulation of Semiconductor Processes and Devices 2004, Proceedings of the 10th International Conference, Munich, Germany, September 2–4, 2004 (Springer, 2004), p. 275.

  50. G. J. Brady, A. J. Way, N. S. Safron, H. T. Evensen, P. Gopalan, and M. S. Arnold, Sci. Adv. 2, e1601240 (2016).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research has been done at VLSI Design and Nano Material Research (NMR) Labs, Department of Electronic Science, Kurukshetra University Haryana-136119 (India). One of the authors (Bhoop Singh) is thankful to World Bank TEQIP-III and NPIU-India for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Singh.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Prasad, B. & Kumar, D. Silicon Nanowire Parameter Extraction Using DFT and Comparative Performance Analysis of SiNWFET and CNTFET Devices. Semiconductors 55, 100–107 (2021). https://doi.org/10.1134/S1063782621010152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621010152

Keywords:

Navigation