Skip to main content
Log in

Arsenic Doping Upon the Deposition of CdTe Layers from Dimethylcadmium and Diisopropyltellurium

  • ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The incorporation and activation of arsenic from tris(dimethylamino)arsine in CdTe layers grown by metal-organic chemical vapor deposition from dimethylcadmium and diisopropyltellurium on GaAs substrates are investigated. The incorporation of arsenic into CdTe depends on the crystallographic orientation of the layers and increases in the series (111)B → (100) → (310). The arsenic concentration in the CdTe layers is proportional to the tris(dimethylamino)arsine flow rate at a power of 1.4 and increases with decreasing diisopropyltellurium/dimethylcadmium ratio from 1.4 to 0.5. After deposition, the CdTe:As layers have p-type conductivity with an arsenic concentration of 1 × 1017–7 × 1018 cm–3 and a hole concentration of 2.7 × 1014–4.6 × 1015 cm–3, respectively; the fraction of electrically active arsenic does not exceed ~0.3%. After annealing in argon (250–450°C), the highest hole concentration is 1 × 1017 cm–3, and the arsenic activation efficiency is ~4.5%. The ionization energy of arsenic determined from the temperature dependence of the hole concentration is in the range of 98–124 meV. The low-temperature photoluminescence spectra of the layers have an emission peak with an energy of ~1.51 eV, which can be attributed to donor–acceptor recombination, where AsTe is an acceptor with an ionization energy of ~90 meV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. A. Green, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, M. Yoshita, and A. W. Y. Ho-Baillie, Progr. Photovolt.: Res. Appl. 27, 565 (2019).

    Article  Google Scholar 

  2. Kanevce, M. O. Reese, T. M. Barnes, S. A. Jensen, and W. K. Metzger, J. Appl. Phys. 121, 214506 (2017).

    Article  ADS  Google Scholar 

  3. E. Molva, K. Saminadayar, and J. L. Pautrat, Solid State Commun. 48, 955 (1983).

    Article  ADS  Google Scholar 

  4. M. Soltani, M. Certier, R. Evrard, and E. Kartheuser, J. Appl. Phys. 78, 5626 (1995).

    Article  ADS  Google Scholar 

  5. J. M. Arias, S. H. Shin, D. E. Cooper, M. Zandian, J. G. Pasko, E. R. Gertner, R. E. DeWames, and J. Singh, J. Vac. Sci. Technol. A 8, 1025 (1990).

    Article  ADS  Google Scholar 

  6. V. S. Evstigneev, A. V. Chilyasov, A. N. Moiseev, and M. V. Kostunin, Thin Solid Films 689, 137514 (2019).

    Article  ADS  Google Scholar 

  7. E. S. Nikonyuk, Z. I. Zakharuk, V. L. Shlyakhovy, P. M. Fochuk, and A. I. Rarenko, Semiconductors 35, 405 (2001).

    Article  ADS  Google Scholar 

  8. D. J. Chadi and C. H. Park, Mater. Sci. Forum 196, 285 (1995).

    Article  Google Scholar 

  9. S. H. Wei and S. B. Zhang, Phys. Rev. B 66, 155211 (2002).

    Article  ADS  Google Scholar 

  10. L. Svob, I. Cheze, A. Lusson, D. Ballutaud, J. F. Rommeluere, and Y. Marfaing, J. Cryst. Growth 184, 459 (1998).

    Article  ADS  Google Scholar 

  11. P. Y. Su, R. Dahal, G. C. Wang, S. Zhang, T. M. Lu, and I. B. Bhat, J. Electron. Mater. 44, 3118 (2015).

    Article  ADS  Google Scholar 

  12. M. Ekawa, K. Yasuda, T. Ferid, and M. Saji, J. Appl. Phys. 71, 2669 (1992).

    Article  ADS  Google Scholar 

  13. A. V. Chilyasov, A. N. Moiseev, V. S. Evstigneev, B. S. Stepanov, and M. N. Drozdov, Inorg. Mater. 52, 1210 (2016).

    Article  Google Scholar 

  14. V. S. Evstigneev, A. V. Chilyasov, A. N. Moiseev, and M. V. Kostyunin, Inorg. Mater. 55, 984 (2019).

    Article  Google Scholar 

  15. G. Kartopu, O. Oklobia, D. Turkay, D. R. Diercks, B. P. Gorman, V. Barrioz, S. Campbell, J. D. Major, M. K. Al Turkestani, S. Yerci, T. M. Barnes, N. S. Beattie, G. Zoppi, S. Jones, and S. J. C. Irvine, Sol. Energy Mater. Sol. Cells 194, 259 (2019).

    Article  Google Scholar 

  16. P. Y. Su, C. Lee, G. C. Wang, T. M. Lu, and I. B. Bhat, J. Electron. Mater. 43, 2895 (2014).

    Article  ADS  Google Scholar 

  17. S. Salim, C. K. Lim, and K. F. Jensen, Chem. Mater. 7, 507 (1995).

    Article  Google Scholar 

  18. M. V. Yakushev, D. V. Brunev, and Yu. G. Sidorov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 64 (2010).

    Article  Google Scholar 

  19. T. Ablekim, S. K. Swain, W. J. Yin, K. Zaunbrecher, J. Burst, T. M. Barnes, D. Kuciauskas, S. H. Wei, and K. G. Lynn, Sci. Rep. 7, 4563 (2017).

    Article  ADS  Google Scholar 

  20. B. E. McCandless, W. A. Buchanan, C. P. Thompson, G. Sriramagiri, R. J. Lovelett, J. Duenow, D. Albin, S. Jensen, E. Colegrove, J. Moseley, H. Moutinho, S. Harvey, M. Al-Jassim, and W. K. Metzger, Sci. Rep. 8, 1 (2018).

    Article  Google Scholar 

  21. S. K. Ghandhi, N. R. Taskar, and I. B. Bhat, Appl. Phys. Lett. 50, 900 (1987).

    Article  ADS  Google Scholar 

  22. L. Svob, Y. Marfaing, B. Clerjaud, D. Côte, A. Lebkiri, and R. Druilhe, J. Cryst. Growth 159, 72 (1996).

    Article  ADS  Google Scholar 

  23. W. Scott, E. L. Stelzer, and R. J. Hager, J. Appl. Phys. 47, 1408 (1976).

    Article  ADS  Google Scholar 

  24. G. L. Burton, D. R. Diercks, O. S. Ogedengbe, P. A. R. D. Jayathilaka, M. Edirisooriya, T. H. Myers, K. N. Zaunbrecher, J. Moseley, T. M. Barnes, and B. P. Gorman, Sol. Energy Mater. Sol. Cells 182, 68 (2018).

    Article  Google Scholar 

  25. J. R. Haynes, Phys. Rev. Lett. 4, 361 (1960).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Analysis of the structures by the SIMS method was carried out using equipment of the Center for Collective Use “Diagnostics of microstructures and nanostructures” of Yaroslavl State University.

Funding

The study was fulfilled on the state order of the Ministry of Science and Education of the Russian Federation (topic no. 0095-2019-0004) and partially supported by the Russian Scientific Foundation (project no. 17-12-01360).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Evstigneev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evstigneev, V.S., Chilyasov, A.V., Moiseev, A.N. et al. Arsenic Doping Upon the Deposition of CdTe Layers from Dimethylcadmium and Diisopropyltellurium. Semiconductors 55, 7–13 (2021). https://doi.org/10.1134/S1063782621010061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621010061

Keywords:

Navigation