Skip to main content
Log in

Structure of Germanium Monoxide Thin Films

  • NONELECTRONIC PROPERTIES OF SEMICONDUCTORS (ATOMIC STRUCTURE, DIFFUSION)
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

By optical methods (Raman spectroscopy, infrared spectroscopy, X-ray photoelectron spectroscopy) and electron-microscopy techniques, it was found that the atomic structure of germanium monoxide films of stoichiometric composition corresponds to the random bonding model and does not contain germanium nanoclusters. This structure is metastable and transforms into a random mixture structure at a temperature of 260°C and higher. The metastability of solid GeO can be caused by internal strains in the atomic network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. C. H. Cheng, A. Chin, and F. S. Yeh, in Proceedings of the Symposium on VLSI Technology (Honolulu, Hawaii, 2010), p. 85.

  2. V. A. Volodin, G. N. Kamaev, V. A. Gritsenko, A. A. Gismatulin, A. Chin, and M. Vergnat, Appl. Phys. Lett. 114, 233104 (2019).

    Article  ADS  Google Scholar 

  3. A. V. Shaposhnikov, T. V. Perevalov, V. A. Gritsenko, C. H. Cheng, and A. Chin, Appl. Phys. Lett. 100, 243506 (2012).

    Article  ADS  Google Scholar 

  4. V. A. Volodin, G. N. Kamaev, and M. Vergnat, Phys. Status Solidi RRL 14, 2000165 (2020).

    Article  Google Scholar 

  5. I. V. Tananaev and M. Ya. Shpirt, Chemistry of Germanium (Khimiya, Moscow, 1967), Chap. 4, p. 102 [in Russian].

    Google Scholar 

  6. N. A. Vasyutinskii, Yu. I. Rys’eva, G. I. Petrov, and A. P. Sidorenko, Neorg. Mater. 1, 1057 (1965).

    Google Scholar 

  7. A. P. Martynenko, V. S. Kryukov, B. V. Strizhkov, and K. G. Marin, Neorg. Mater. 9, 1568 (1973).

    Google Scholar 

  8. E. B. Gorokhov and V. V. Grishchenko, in Ellipsometry: Theory, Methods, Applications, Collection of Articles (Novosibirsk, Nauka, 1987), p. 147 [in Russian].

    Google Scholar 

  9. K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, Appl. Phys. Lett. 76, 2244 (2000).

    Article  ADS  Google Scholar 

  10. I. G. Stoyanova, A. A. Timofeev, A. N. Zelyanina, V. N. Rybakov, I. F. Aniskin, Z. A. Maslova, and N. M. Moiseeva, Elektron. Tekh., Ser. III: Mikroelektron. 1, 71 (1972).

    Google Scholar 

  11. D. V. Sheglov, E. B. Gorokhov, V. A. Volodin, K. N. Astankova, and A. V. Latyshev, Nanotechnology 19, 245302 (2008).

    Article  ADS  Google Scholar 

  12. D. A. Dzhishiashvili, V. V. Gobronidze, Z. V. Berishvili, Z. N. Shiolashvili, G. A. Skhiladze, and L. G. Sakhvadze, in Proceedings of the International Conference on Modern Information and Electronic Technologies (Odessa, Ukraina, 2005), p. 371.

  13. S. G. Ellis, J. Appl. Phys. 28, 1262 (1957).

    Article  ADS  Google Scholar 

  14. Laser Pulses—Theory, Technology, and Applications, Ed. by I. Peshko (Rijeka, InTech., 2012), Vol. 13, p. 383.

    Google Scholar 

  15. V. V. Strekalov, Extended Abstract of Master’s Thesis (Novosib. State Tech. Univ., Novosibirsk, 2014).

  16. V. A. Volodin, V. A. Gritsenko, and A. Chin, Tech. Phys. Lett. 44, 424 (2018).

    Article  ADS  Google Scholar 

  17. W. Sun, G. Zhong, C. Kubel, A. A. Jelle, C. Qian, L. Wang, M. Ebrahimi, L. M. Reyes, A. S. Helmy, and G. A. Ozin, Angew. Chem. Int. Ed. 56, 6329 (2017).

    Article  Google Scholar 

  18. M. Ardyanian, H. Rinnert, X. Devaux, and M. Vergant, Appl. Phys. Lett. 89, 011902 (2006).

    Article  ADS  Google Scholar 

  19. Y. Negishi, S. Nagao, Y. Nakamura, and A. Nakajima, J. Appl. Phys. 88, 6037 (2000).

    Article  ADS  Google Scholar 

  20. K. N. Astankova, E. B. Gorokhov, I. A. Azarov, V. A. Volodin, and A. V. Latyshev, Surf. Interfaces 6, 56 (2017).

    Article  Google Scholar 

  21. V. A. Gritsenko, Phys. Usp. 51, 699 (2008).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank A.G. Cherkov for conducting high-resolution TEM studies and I.P. Prosvirin for recording the XPS spectra of the GeO film.

The study was carried out in part with the use of equipment of the Collective Use Center “Nanostructures”, Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, and the Collective Use Center “High Technologies and Analytics of Nanosystems”, Novosibirsk State University.

Funding

The part of the study concerned with XPS measurements was supported by the Russian Science Foundation, project no. 18-49-08001. The part of the study concerned with Raman spectroscopy was supported by the Ministry of Education and Science of the Russian Federation, project no. 2020-1902-01-058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. N. Astankova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astankova, K.N., Volodin, V.A. & Azarov, I.A. Structure of Germanium Monoxide Thin Films. Semiconductors 54, 1555–1560 (2020). https://doi.org/10.1134/S1063782620120027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620120027

Keywords:

Navigation