Skip to main content
Log in

Kinetics of the Luminescence Response of Self-Assembled Ge(Si) Nanoislands Embedded in Two-Dimensional Photonic Crystals

  • XXIV INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 10–13, 2020
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studies of the spectral and kinetic characteristics of the photoluminescence of photonic crystals formed on the basis of structures with self-assembled Ge(Si) nanoislands are reported. The experimentally observed enhancement of the photoluminescence-signal intensity of the nanoislands in the spectral range 1.1–1.6 μm due to interaction with the radiative modes of photonic crystals in the vicinity of the Γ point of the Brillouin zone and the effect of such interaction on the probability of radiative recombination in Ge(Si) nanoislands are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. Wang and Y. Long, Sci. Bull. 63, 1267 (2018).

    Article  Google Scholar 

  2. R. W. Kelsall, Nat. Photon. 6, 577 (2012).

    Article  ADS  Google Scholar 

  3. H. Park, A. Fang, S. Kodama, and J. Bowers, Opt. Express 13, 9460 (2010).

    Article  ADS  Google Scholar 

  4. L. Tsybeskov and D. J. Lockwood, Proc. IEEE 97, 1284 (2009).

    Article  Google Scholar 

  5. S. Saito, A. Al-Attili, K. Oda, and Y. Ishikawa, Semicond. Sci. Technol. 31, 043002 (2016).

    Article  ADS  Google Scholar 

  6. V. Reboud, A. Gassenq, J. Hartmann, J. Widiez, L. Virot, J. Aubin, K. Guilloy, S. Tardif, J. Fedeli, N. Pauc, A. Chelnokov, and V. Calvo, Progr. Cryst. Growth Charact. Mater. 63, 1 (2017).

    Article  Google Scholar 

  7. J. Liu, X. Sun, R. Camacho-Aguilera, L. Kimerling, and J. Michel, Opt. Lett. 35, 679 (2010).

    Article  ADS  Google Scholar 

  8. R. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, Opt. Express 20, 11316 (2012).

    Article  ADS  Google Scholar 

  9. S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, Nat. Commun. 8, 1845 (2017).

    Article  ADS  Google Scholar 

  10. F. T. Armand Pilon, A. Lyasota, Y.-M. Niquet, V. Reboud, V. Calvo, N. Pauc, J. Widiez, C. Bonzon, J. Hartmann, A. Chelnokov, J. Faist, and H. Sigg, Nat. Commun. 10, 2724 (2019).

    Article  ADS  Google Scholar 

  11. R. Apertz, L. Vescan, A. Hartmann, C. Dieker, and H. Luth, Appl. Phys. Lett. 66, 445 (1995).

    Article  ADS  Google Scholar 

  12. L. Vescan, T. Stoica, O. Chretien, M. Goryll, E. Mateeva, and A. Muck, J. Appl. Phys. 87, 7275 (2000).

    Article  ADS  Google Scholar 

  13. N. V. Vostokov, Yu. N. Drozdov, Z. F. Krasil’nik, D. N. Lobanov, A. V. Novikov, and A. N. Yablonskii, JETP Lett. 76, 365 (2002).

    Article  ADS  Google Scholar 

  14. Yu. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, Thin Solid Films 517, 398 (2008).

    Article  ADS  Google Scholar 

  15. Z. F. Krasilnik, A. V. Novikov, D. N. Lobanov, K. E. Kudryavtsev, A. V. Antonov, S. V. Obolenskiy, N. D. Zakharov, and P. Werner, Semicond. Sci. Technol. 26, 014029 (2011).

    Article  ADS  Google Scholar 

  16. F. Priolo, T. Gregorkiewicz, M. Galli, and T. F. Krauss, Nat. Nanotechnol. 9, 19 (2014).

    Article  ADS  Google Scholar 

  17. I. Staude and J. Schilling, Nat. Photon. 11, 274 (2017).

    Article  ADS  Google Scholar 

  18. V. Rutckaia, F. Heyroth, A. Novikov, M. Shaleev, M. Petrov, and J. Schilling, Nano Lett. 17, 6886 (2017).

    Article  ADS  Google Scholar 

  19. Q. Qiao, J. Xia, C. Lee, and G. Zhou, Micromachines 9, 541 (2018).

    Article  Google Scholar 

  20. S. David, M. El kurdi, P. Boucaud, A. Chelnokov, V. Le Thanh, D. Bouchier, and J.-M. Lourtioz, Appl. Phys. Lett. 83, 2509 (2003).

    Article  ADS  Google Scholar 

  21. N. Hauke, S. Lichtmannecker, T. Zabel, F. P. Laussy, A. Laucht, M. Kaniber, D. Bougeard, G. Abstreiter, J. J. Finley, and Y. Arakawa, Phys. Rev. B 84, 085320 (2011).

    Article  ADS  Google Scholar 

  22. Y. Shiraki, X. Xu, J. Xia, T. Tsuboi, and T. Maruizumi, ECS Trans. 45, 235 (2012).

    Article  ADS  Google Scholar 

  23. C. Zeng, Y. Ma, Y. Zhang, D. Li, Z. Huang, Y. Wang, Q. Huang, J. Li, Z. Zhong, J. Yu, Z. Jiang, and J. Xia, Opt. Express 23, 22250 (2015).

    Article  ADS  Google Scholar 

  24. M. Schatz, F. Hack, M. Glaser, P. Rauter, M. Brehm, L. Spindlberger, A. Simbula, M. Galli, T. Fromherz, and F. Schäffler, ACS Photon. 4, 665 (2017).

  25. P. Lalanne, C. Sauvan, and J. P. Hugonin, Laser Photon. Rev. 2, 514 (2008).

    Article  ADS  Google Scholar 

  26. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, Phys. Rev. Lett. 78, 3294 (1997).

    Article  ADS  Google Scholar 

  27. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, J. Lightwave Technol. 17, 2096 (1999).

    Article  ADS  Google Scholar 

  28. M. Grydlik, F. Hackl, H. Groiss, M. Glaser, A. Halilovic, T. Fromherz, W. Jantsch, F. Scha[umlaut]ffler, and M. Brehm, ACS Photon. 3, 298 (2016).

    Article  Google Scholar 

  29. X. Xu, N. Usami, T. Maruizumi, and Y. Shiraki, J. Cryst. Growth 378, 636 (2013).

    Article  ADS  Google Scholar 

  30. A. V. Novikov, A. N. Yablonskiy, V. V. Platonov, S. V. Obolenskiy, D. N. Lobanov, and Z. F. Krasil’nik, Semiconductors 44, 329 (2010).

    Article  ADS  Google Scholar 

  31. E. M. Purcell, Phys. Rev. 69, 681 (1946).

    Article  Google Scholar 

  32. R. Jannesari, M. Schatzl, F. Hackl, M. Glaser, K. Hingerl, T. Fromherz, and F. Schäffler, Opt. Express 22, 25426 (2014).

    Article  ADS  Google Scholar 

  33. M. V. Stepikhova, A. V. Novikov, A. N. Yablonskiy, M. V. Shaleev, D. E. Utkin, V. V. Rutckaia, E. V. Skorokhodov, S. M. Sergeev, D. V. Yurasov, and Z. F. Krasilnik, Semicond. Sci. Technol. 34, 024003 (2019).

    Article  ADS  Google Scholar 

  34. B. V. Kamenev, L. Tsybeskov, J.-M. Baribeau, and D. Lockwood, Phys. Rev. B 72, 193306 (2005).

    Article  ADS  Google Scholar 

  35. D. Lockwood,  J.-M. Baribeau,  B. V. Kamenev, E.-K. Lee, and L. Tsybeskov, Semicond. Sci. Technol. 23, 064003 (2008).

    Article  ADS  Google Scholar 

  36. O. G. Schmidt and K. Eberl, Phys. Rev. B 61, 13721 (2000).

    Article  ADS  Google Scholar 

  37. K. Eberl, M. Lipinski, Y. Manz, W. Winter, N. Jin-Phillipp, and O. Schmidt, Phys. E (Amsterdam, Neth.) 9, 164 (2001).

  38. K. Brunner, Rep. Progr. Phys. 65, 27 (2002).

    Article  ADS  Google Scholar 

  39. J.-M. Baribeau, X. Wu, N. Rowell, and D. Lockwood, J. Phys.: Condens. Matter 18, 139 (2006).

    Google Scholar 

  40. L. Tsybeskov, E.-K. Lee, H.-Y. Chang, D. J. Lockwood, J.-M. Baribeau, X. Wu, and T. I. Kamins, Appl. Phys. A 95, 1015 (2009).

    Article  ADS  Google Scholar 

  41. Yu. N. Drozdov, Z. F. Krasilnik, K. E. Kudryavtsev, D. N. Lobanov, A. V. Novikov, M. V. Shaleev, D. V. Shengurov, V. B. Shmagin, and A. N. Yablonskiy, Semiconductors 42, 286 (2008).

    Article  ADS  Google Scholar 

  42. B. Julsgaard, P. Balling, J. Hansen, A. Svane, and A. Larsen, Appl. Phys. Lett. 98, 093101 (2011).

    Article  ADS  Google Scholar 

  43. A. N. Yablonskiy, N. A. Baidakova, A. V. Novikov, and D. N. Lobanov, Semiconductors 47, 1496 (2013).

    Article  ADS  Google Scholar 

  44. A. N. Yablonskii, N. A. Baidakova, A. V. Novikov, D. N. Lobanov, and M. V. Shaleev, Semiconductors 49, 1410 (2015).

    Article  ADS  Google Scholar 

  45. N. A. Baidakova, Extended Abstract of Cand. Sci. Dissertation (2019).

  46. E.-K. Lee, D. Lockwood, J.-M. Baribeau, A. M. Bratkovsky, T. I. Kamins, and L. Tsybeskov, Phys. Rev. B 79, 233307 (2009).

    Article  ADS  Google Scholar 

  47. F. Hackl, M. Grydlik, P. Klenovsky, F. Schaffler, T. Fromherz, and M. Brehm, Ann. Phys. 531, 1800259 (2019).

    Article  Google Scholar 

  48. B. Julsgaard, P. Balling, J. Hansen, A. Svane, and A. Larsen, Nanotechnology 22, 435401 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The PhCs based on silicon structures with Ge(Si) nanoislands were fabricated with the use of equipment of the Multiple-Access Center “Physics and Technology of Microstructures and Nanostructures”, Institute for Physics of Microstructures, Russian Academy of Sciences.

We thank D.E. Utkin (Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences) for conducting electron-beam lithography.

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 18-42-520047_r, and the Presidium of the Russian Academy of Sciences, program of fundamental research no. 13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Yablonskiy.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yablonskiy, A.N., Novikov, A.V., Stepikhova, M.V. et al. Kinetics of the Luminescence Response of Self-Assembled Ge(Si) Nanoislands Embedded in Two-Dimensional Photonic Crystals. Semiconductors 54, 1352–1359 (2020). https://doi.org/10.1134/S1063782620100334

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620100334

Keywords:

Navigation