Skip to main content
Log in

Electron-Population Bragg Grating Induced in an AlxGa1 –xAs–GaAs–AlxGa1 –xAs Heterostructure by Intrinsic Stimulated Picosecond Emission

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

It is shown that modulation of the spectrum of stimulated picosecond emission generated in an AlxGa1 – xAs–GaAs–AlxGa1 – xAs waveguide heterostructure upon the optical pumping of GaAs, as well as a number of previous experimental results, can be explained under the assumption that the emission forms a symmetric modification of the Bragg grating of the nonequilibrium electron population in GaAs. The boundary conditions determining the grating design are proposed. To satisfy them, the grating can change only discretely. The latter is consistent with a change in the modulation of the spectrum of light absorption in GaAs, which reflects the emission-stimulated modulation of the population depletion. Inducing the grating, i.e., spatial hole burning, is one of the reasons for the multimode character of the emission, competition and switching of its modes, and modulation of the gain spectrum (frequency hole burning). The same is possible in a semiconductor laser, as in a waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. In [11], a GaAs-layer thickness of 1.6 μm was given incorrectly.

  2. This will be confirmed, in particular, in the further work we plan.

REFERENCES

  1. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, J. Exp. Theor. Phys. 117, 191 (2013).

    Article  ADS  Google Scholar 

  2. C. L. Tang, H. Statz, and G. de Mars, J. Appl. Phys. 34, 2289 (1963).

    Article  ADS  Google Scholar 

  3. O. Svelto, Principles of Lasers (Plenum, New York, 1976).

    Book  Google Scholar 

  4. H. Statz, C. L. Tang, and J. M. Lavine, J. Appl. Phys. 35, 2581 (1964).

    Article  ADS  Google Scholar 

  5. L. V. Asryan and R. A. Suris, Semiconductors 33, 981 (1999).

    Article  ADS  Google Scholar 

  6. A. V. Savel’ev, V. V. Korenev, M. V. Maksimov, and A. E. Zhukov, Semiconductors 49, 1499 (2015).

    Article  ADS  Google Scholar 

  7. W. S. Rabinovich and B. J. Feldman, IEEE J. Quant. Electron. 25, 20 (1989).

    Article  ADS  Google Scholar 

  8. A. V. Andreev, Sov. Phys. Usp. 33, 997 (1990).

    Article  ADS  Google Scholar 

  9. P. P. Vasil’ev, R. V. Penty, and I. H. White, Light Sci. Appl. 5, e16086 (2016).

    Article  ADS  Google Scholar 

  10. P. P. Vasil’ev, R. V. Penty, and I. H. White, Opt. Express 26, 26156 (2018).

    Article  ADS  Google Scholar 

  11. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, J. Commun. Technol. Electron. 63, 1235 (2018).

    Article  Google Scholar 

  12. N. A. Semenov, Technical Electrodynamics (Svyaz’, Moscow, 1973) [in Russian].

    Google Scholar 

  13. J. S. Blakemore, J. Appl. Phys. 53, R123 (1982).

    Article  ADS  Google Scholar 

  14. V. N. Luk’yanov, A. T. Semenov, N. V. Shelkov, and S. D. Yakubovich, Sov. J. Quantum Electron. 5, 1293 (1975).

    Article  ADS  Google Scholar 

  15. N. N. Ageeva, I. L. Bronevoi, A. N. Krivonosov, S. E. Kumekov, and S. V. Stegantsov, Semiconductors 36, 136 (2002).

    Article  ADS  Google Scholar 

  16. N. N. Ageeva, I. L. Bronevoi, A. N. Krivonosov, and S. V. Stegantsov, Semiconductors 40, 785 (2006).

    Article  ADS  Google Scholar 

  17. N. N. Ageeva, I. L. Bronevoi, A. N. Krivonosov, and T. A. Nalet, Semiconductors 42, 1037 (2008).

    Article  ADS  Google Scholar 

  18. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 44, 1121 (2010).

    Article  ADS  Google Scholar 

  19. N. N. Ageeva, I. L. Bronevoi, E. G. Dyadyushkin, V. A. Mironov, S. E. Kumekov, and V. I. Perel’, Solid State Commun. 72, 625 (1989).

    Article  ADS  Google Scholar 

  20. I. L. Bronevoi, S. E. Kumekov, and V. I. Perel’, JETP Lett. 43, 473 (1986).

    ADS  Google Scholar 

  21. I. L. Bronevoi, A. N. Krivonosov, and T. A. Nalet, Solid State Commun. 98, 903 (1996).

    Article  ADS  Google Scholar 

  22. H. Bergner, F. Brückner, and B. Schröder, Sov. J. Quantum Electron. 13, 736 (1983).

    Article  ADS  Google Scholar 

  23. C. W. Willemsen, L. A. Coldren, and H. Temkin, Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications (Cambridge Univ. Press, Cambridge, UK, 2001).

    Google Scholar 

  24. G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  25. L. W. Casperson, J. Appl. Phys. 48, 256 (1977).

    Article  ADS  Google Scholar 

  26. V. D. Solov’ev, Physics of Lasers, Course of Lectures for 4th Year of University. http://elib.spbstu.ru/dl/2313.pdf/download/2313.pdf.

  27. N. N. Ageeva, I. L. Bronevoi, D. N. Zabegaev, and A. N. Krivonosov, Semiconductors 54, 22 (2020).

    Article  ADS  Google Scholar 

  28. V. P. Gribkovskii, Theory of Absorption and Emission of Light in Semiconductors (Nauka Tekhnika, Minsk, 1975) [in Russian].

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank R.A. Suris for discussion of the study and invaluable advice.

Funding

This study was carried out under the state assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Bronevoi.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ageeva, N.N., Bronevoi, I.L., Zabegaev, D.N. et al. Electron-Population Bragg Grating Induced in an AlxGa1 –xAs–GaAs–AlxGa1 –xAs Heterostructure by Intrinsic Stimulated Picosecond Emission. Semiconductors 54, 1205–1214 (2020). https://doi.org/10.1134/S1063782620100024

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620100024

Keywords:

Navigation