Skip to main content
Log in

Comparative Study on Structural, Optical, and Electrical Properties of ZnO Thin Films Prepared by PLD and Sputtering Techniques

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

ZnO thin films were formed on c-plane sapphire and p-GaN substrates by pulsed laser deposition (PLD) and radio frequency (RF) magnetron sputtering techniques. XRD analysis including omega scan depicted the formation of highly textured wurtzite ZnO with c-axis. The texture was primarily introduced by the substrate effects as the planes lying at oblique angles also exhibited six-fold symmetry during phi scan. Atomic force microscopy exhibited the surface roughness of 4.33 and 12.99 nm for PLD and sputtered ZnO films, respectively. In photoluminescence (PL) measurements, a strong UV emission was observed at 3.30 eV for both ZnO films. However, deep-level emission was observed at around 2.61 eV in PLD film, but it had a wide range from 2.61 to 2.29 eV in case of sputter-deposited film. From the transmission spectra, the optical band gap values were found to be 3.29 and 3.28 eV for PLD and sputtered ZnO films, respectively. Hall measurement revealed the resistivity values of 0.0792 and 0.4832 Ω cm and carrier concentrations of 2.28 × 1018 and 1.73 × 1018 cm–3 for respective PLD and sputtered films. I(V) current–voltage curves clearly demonstrated the n-ZnO|p-GaN hetero-junction with turn-on voltage of 3.8 and 5.2 V for PLD and sputtered samples, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. M. A. Hernández-Fenollosa, L. C. Damonte, and B. Marí, Superlatt. Microstruct. 38, 336 (2005).

    ADS  Google Scholar 

  2. J. J. Ding, S. Y. Ma, H. X. Chen, X. F. Shi, T. T. Zhou, and L. M. Mao, Phys. B: Condens. Matter 404, 2439 (2009).

    ADS  Google Scholar 

  3. A. Teke, Ü. Özgür, S. Doğan, X. Gu, H. Morkoç, B. Nemeth, J. Nause, and H. Everitt, Phys. Rev. B 70, 195207 (2004).

    ADS  Google Scholar 

  4. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103, 459 (1997).

    ADS  Google Scholar 

  5. A. B. Djurišić, W. C. H. Choy, V. A. L. Roy, Y. H. Leung, C. Y. Kwong, K. W. Cheah, T. K. Gundu Rao, W. K. Chan, H. Fei Lui, and C. Surya, Adv. Funct. Mater. 14, 856 (2004).

    Google Scholar 

  6. R. Hong, H. Qi, J. Huang, H. He, Z. Fan, and J. Shao, Thin Solid Films 473, 58 (2005).

    ADS  Google Scholar 

  7. E. Sonmez, S. Aydin, M. Yilmaz, M. T. Yurtcan, T. Karacali, and M. Ertugrul, J. Nanomater. 2012, 950793 (2012).

    Google Scholar 

  8. K. Uma, S. Ananthakumar, R. Mangalaraja, T. Soga, and T. Jimbo, Adv. Mater. Phys. Chem. 3, 194 (2013).

    Google Scholar 

  9. N. Rehman, M. Mehmood, R. Rizwan, M. A. Rasheed, F. C. C. Ling, and M. Younas, Chem. Phys. Lett. 609, 26 (2014). https://doi.org/10.1016/j.cplett.2014.05.054

    Article  ADS  Google Scholar 

  10. X. W. Sun and H. S. Kwok, J. Appl. Phys. 86, 408 (1999).

    ADS  Google Scholar 

  11. D. C. Look, Mater. Sci. Eng. B 80, 383 (2001).

    Google Scholar 

  12. G. T. Du, W. F. Liu, J. M. Bian, L. Z. Hu, H. W. Liang, X. S. Wang, A. M. Liu, and T. P. Yang, Appl. Phys. Lett. 89, 052113 (2006).

    ADS  Google Scholar 

  13. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4, 42 (2005).

    ADS  Google Scholar 

  14. H. S. Kim,  F. Lugo,  S. J. Pearton,  D. P. Norton, Y.-L. Wang, and F. Ren, Appl. Phys. Lett. 92, 112108 (2008).

    ADS  Google Scholar 

  15. L. G. Wang and A. Zunger, Phys. Rev. Lett. 90, 256401 (2003).

    ADS  Google Scholar 

  16. H.-M. Huang, C.-C. Kuo, C.-Y. Chang, Y.-T. Lin, T.-C. Lu, L.-W. Tu, and W.-F. Hsieh, J. Electrochem. Soc. 159, H290 (2012).

    Google Scholar 

  17. S. C. Hung, P. J. Huang, C. E. Chan, W. Y. Uen, F. Ren, S. J. Pearton, T. N. Yang, C. C. Chiang, S. M. Lan, and G. C. Chi, Appl. Surf. Sci. 255, 3016 (2008).

    ADS  Google Scholar 

  18. H. Huang, G. Fang, Y. Li, S. Li, X. Mo, H. Long, H. Wang, D. L. Carroll, and X. Zhao, Appl. Phys. Lett. 100, 233502 (2012).

    ADS  Google Scholar 

  19. W. S. Han, Y. Y. Kim, B. H. Kong, and H. K. Cho, Thin Solid Films 517, 5106 (2009).

    ADS  Google Scholar 

  20. X. D. Chen, C. C. Ling, S. Fung, C. D. Beling, Y. F. Mei, R. K. Y. Fu, G. G. Siu, and P. K. Chu, Appl. Phys. Lett. 88, 132104 (2006).

    ADS  Google Scholar 

  21. S. T. Tan, X. W. Sun, J. L. Zhao, S. Iwan, Z. H. Cen, T. P. Chen, J. D. Ye, G. Q. Lo, D. L. Kwong, and K. L. Teo, Appl. Phys. Lett. 93, 013506 (2008).

    ADS  Google Scholar 

  22. J. B. You, X. W. Zhang, S. G. Zhang, H. R. Tan, J. Ying, Z. G. Yin, Q. S. Zhu, and P. K. Chu, J. Appl. Phys. 107, 083701 (2010).

    ADS  Google Scholar 

  23. H. Long, G. Fang, H. Huang, X. Mo, W. Xia, B. Dong, X. Meng, and X. Zhao, Appl. Phys. Lett. 95, 013509 (2009).

    ADS  Google Scholar 

  24. Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, Appl. Phys. Lett. 92, 113505 (2008).

    ADS  Google Scholar 

  25. T. Shu-Yi, H. Min-Hsiung, and L. Yang-Ming, in Proceedings of the 2011 IEEE International Conference on Nano/Micro Engineered and Molecular Systems NEMS (2011), p. 1184.

  26. R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan, M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca-Riba, A. A. Iliadis, and K. A. Jones, Appl. Phys. Lett. 73, 348 (1998).

    ADS  Google Scholar 

  27. Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka, and G. Shimaoka, Appl. Surf. Sci. 142, 233 (1999).

    ADS  Google Scholar 

  28. D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).

    ADS  Google Scholar 

  29. E. Dalchiele, P. Giorgi, R. Marotti, F. Martın, J. Ramos-Barrado, R. Ayouci, and D. Leinen, Sol. Energy Mater. Sol. Cells 70, 245 (2001).

    Google Scholar 

  30. Z. Hai, F. Guojia, Z. Yongdan, L. Nishuang, W. Haoning, H. Huihui, L. Songzhan, and Z. Xingzhong, Eur. Phys. Lett. 97, 68001 (2012).

    Google Scholar 

  31. G.-H. Lee, D.-h. Bae, and W.-J. Lee, J. Ceram. Process. Res. 13, 229 (2012).

    Google Scholar 

  32. A. Kumar, S. Jeedigunta, I. Tarasov, and S. Ostapenko, AZO J. Mater. Online 6, 1833 (2010).

    Google Scholar 

  33. W. Zhao-yang, H. Li-zhong, Z. Jie, S. Jie, and W. Zhi-jun, Vacuum 78, 53 (2005).

    ADS  Google Scholar 

  34. A. Aravind, M. K. Jayaraj, M. Kumar, and R. Chandra, Appl. Surf. Sci. 286, 54 (2013).

    ADS  Google Scholar 

  35. H. S. Kim, S. J. Pearton, D. P. Norton, and F. Ren, Appl. Phys. A 91, 255 (2008).

    ADS  Google Scholar 

  36. J. B. You, X. W. Zhang, S. G. Zhang, J. X. Wang, Z. G. Yin, H. R. Tan, W. J. Zhang, P. K. Chu, B. Cui, A. M. Wowchak, A. M. Dabiran, and P. P. Chow, Appl. Phys. Lett. 96, 201102 (2010).

    ADS  Google Scholar 

  37. M. J. C. H. C. Chen, Y. H. Huang, W. C. Sun, W. C. Li, J. R. Yang, H. Kuan, and M. Shiojiri, IEEE Trans. Electron Dev. 58 (7), 2122 (2011).

    ADS  Google Scholar 

  38. C.-S. Son, S.-M. Kim, Y.-H. Kim, S.-I. Kim, Y. T. Kim, K. H. Yoon, I.-H. Choi, and H. C. Lopez, J. Korean Phys. Soc. 45, S685 (2004).

    Google Scholar 

  39. S. A. M. Lima, F. A. Sigoli, M. Jafelicci, Jr., and M. R. Davolos, Int. J. Inorg. Mater. 3, 749 (2001).

    Google Scholar 

  40. V. Nikitenko, in Zinc Oxide—A Material for Micro- and Optoelectronic Applications, Ed. by N. Nickel and E. Terukov (Springer, Netherlands, 2005), Vol. 194, p. 69.

    Google Scholar 

  41. T. P. Rao and M. C. Santhoshkumar, Appl. Surf. Sci. 255, 4579 (2009).

    ADS  Google Scholar 

  42. S. Mahmoud, A. H. Eid, and H. Omar, Fiz. A 6, 111 (1997).

    ADS  Google Scholar 

  43. J.-L. Zhao, X.-M. Li, J.-M. Bian, W.-D. Yu, and X.-D. Gao, J. Cryst. Growth 276, 507 (2005).

    ADS  Google Scholar 

  44. I. Hamberg and C. G. Granqvist, J. Appl. Phys. 60, R123 (1986).

    ADS  Google Scholar 

  45. F. K. Shan and Y. S. Yu, Thin Solid Films 435, 174 (2003).

    ADS  Google Scholar 

  46. B. J. Lokhande and M. D. Uplane, Appl. Surf. Sci. 167, 243 (2000).

    ADS  Google Scholar 

  47. M. A. Martínez, J. Herrero, and M. T. Gutiérrez, Sol. Energy Mater. Sol. Cells 31, 489 (1994).

    Google Scholar 

  48. T. K. Subramanyam, B. Srinivasulu Naidu, and S. Uthanna, Cryst. Res. Technol. 8 (34), 981 (1999).

    Google Scholar 

  49. Y. Qu, T. A. Gessert, T. J. Coutts, and R. Noufi, J. Vacuum Sci. Technol. A 12, 1507 (1994).

    ADS  Google Scholar 

  50. P. Beckmann and A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Surfaces (Pergamon, Oxford, 1963).

    MATH  Google Scholar 

  51. A. Ashour, M. A. Kaid, N. Z. El-Sayed, and A. A. Ibrahim, Appl. Surf. Sci. 252, 7844 (2006).

    ADS  Google Scholar 

  52. N. A. Lange, M. Gordon, and B. S. Forker, Handbook of Chemistry (McGraw Hill, New York, 1961).

    Google Scholar 

  53. E. M. Bachari, G. Baud, S. Ben Amor, and M. Jacquet, Thin Solid Films 348, 165 (1999).

    ADS  Google Scholar 

  54. N. Shakti and P. S. Gupta, Appl. Phys. Res. 2, 19 (2010).

    Google Scholar 

  55. M. H. Mamat, M. Z. Sahdan, S. Amizam, H. A. Rafaie, Z. Khusaimi, A. Z. Ahmed, S. Abdullah, and M. Rusop, in Proceedings of the IEEE International Conference on Semiconductor Electronics, ICSE 2008 (2008), p. 566.

  56. E. Fortunato, V. Assunção, A. Gonçalves, A. Marques, H. Águas, L. Pereira, I. Ferreira, P. Vilarinho, and R. Martins, Thin Solid Films 451–452, 443 (2004).

    Google Scholar 

  57. S. I. Bhat, P. M. Rao, A. P. G. Bhat, and D. K. Avasthi, Surf. Coat. Technol. 158–159, 725 (2002).

    Google Scholar 

  58. N. Ponpandian, P. Balaya, and A. Narayanasamy, J. Phys.: Condens. Matter 14, 3221 (2002).

    ADS  Google Scholar 

  59. W. H. Steier, A. Chen, S.-S. Lee, S. Garner, H. Zhang, V. Chuyanov, L. R. Dalton, F. Wang, A. S. Ren, C. Zhang, G. Todorova, A. Harper, H. R. Fetterman, D. Chen, A. Udupa, D. Bhattacharya, and B. Tsap, Chem. Phys. 245, 487 (1999).

    Google Scholar 

  60. P. Sharma and S. C. Katyal, J. Optoelectron. Adv. Mater. 9, 2000 (2007).

    Google Scholar 

  61. A. F. Kohan, G. Ceder, D. Morgan, and C. G. van de Walle, Phys. Rev. B 61, 15019 (2000).

    ADS  Google Scholar 

  62. C. G. van de Walle, Phys. Rev. Lett. 85, 1012 (2000).

    ADS  Google Scholar 

  63. C.-H. Chen, S.-J. Chang, S.-P. Chang, M.-J. Li, I.-C. Chen, T.-J. Hsueh, and C.-L. Hsu, Appl. Phys. Lett. 95, 223101 (2009).

    ADS  Google Scholar 

Download references

Funding

Authors would like to thank Higher Education Commission (HEC), Pakistan for providing financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mehmood.

Ethics declarations

All the authors of this manuscript have no conflict of interest with anyone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H.NuR., Mehmood, M., Ling, F.C. et al. Comparative Study on Structural, Optical, and Electrical Properties of ZnO Thin Films Prepared by PLD and Sputtering Techniques. Semiconductors 54, 999–1010 (2020). https://doi.org/10.1134/S1063782620090201

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620090201

Keywords:

Navigation