Skip to main content
Log in

Quantum Coherence and the Kondo Effect in the 2D Electron Gas of Magnetically Undoped AlGaN/GaN High-Electron-Mobility Transistor Heterostructures

  • XXIV INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 10–13, 2020
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The unusual observation of the Kondo effect in the two-dimensional electron gas (2DEG) of magnetically undoped AlGaN/GaN heterostructures is reported. The temperature-dependent zero-field resistivity data exhibits an upturn below 120 K, while the standard low-temperature weak localization and then weak antilocalization behaviour is revealed at T → 0. Magnetic transport investigations of the system are performed in the temperature range of 0.1–300 K and at magnetic fields up to 8 T, applied perpendicularly to the 2DEG plane. The experimental data are analyzed in terms of the multichannel Kondo model for d0 magnetic materials and weak localization theory taking into account the spin-orbit interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gallium Nitride (GaN): Physics, Devices, and Technology, Ed. by A. F. Medjdoub and K. Iniewski (CRC, New York, 2016).

    Google Scholar 

  2. M. N. Gurusinghe, S. K. Davidsson, and T. G. Andersson, Phys. Rev. B 72, 045316 (2005).

    Article  ADS  Google Scholar 

  3. O. Ambacher, J. Appl. Phys. 87, 334 (2000).

    Article  ADS  Google Scholar 

  4. I. O. Mayboroda, I. S. Ezubchenco, Yu. V. Grishchenko, M. Yu. Presniakov, and M. L. Zanaveskin, J. Surf. Invest. 11, 1135 (2017).

    Article  Google Scholar 

  5. I. O. Mayboroda, A. A. Knizhnik, Yu. V. Grishchenko, I. S. Ezubchenko, M. L. Zanaveskin, O. A. Kondratev, M. Yu. Presniakov, B. V. Potapkin, and V. A. Ilyin, J. Appl. Phys. 122, 105305 (2017).

    Article  ADS  Google Scholar 

  6. L. L. Lev, I. O. Maiboroda, M. A. Husanu, E. S. Grichuk, N. K. Chumakov, I. S. Ezubchenko, X. Wang, T. Schmitt, M. L. Zanaveskin, V. G. Valeyev, and V. N. Strocov, Nat. Commun. 9, 2653 (2018).

    Article  ADS  Google Scholar 

  7. M. Kapilashrami, J. Xu, K. V. Rao, L. Belova, E. Carlegrim, and M. Fahlman, J. Phys.: Condens. Matter 22, 345004 (2010).

    Google Scholar 

  8. Zh. Zhang, U. Schwingenschoegl, and I. S. Roqan, J. Appl. Phys. 116, 183905 (2014).

    Article  ADS  Google Scholar 

  9. H. Jin, Y. Dai, BaiBiao Huang, and M.-H. Whangbo, Appl. Phys. Lett. 94, 162505 (2009).

    Article  ADS  Google Scholar 

  10. P. Nozieres and A. Blandin, J. Phys. 41, 193 (1980).

    Article  Google Scholar 

  11. D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599 (1998).

    Article  Google Scholar 

  12. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980);

    Article  ADS  Google Scholar 

  13. H.-P. Wittmann and A. Schmid, J. Low Temp. Phys. 69, 131 (1987).

    Article  ADS  Google Scholar 

  14. M. G. Vavilov, A. Kaminski, and L. I. Glazman, Phys. E (Amsterdam, Neth.) 18, 64 (2003);

  15. M. G. Vavilov, and L. I. Glazman, Phys. Rev. B 67, 115310 (2003).

    Article  ADS  Google Scholar 

  16. D. Spirito, L. di Gaspare, F. Evangelisti, A. di Gaspare, E. Giovine, and A. Notargiacomo, Phys. Rev. B 85, 235314 (2012).

    Article  ADS  Google Scholar 

  17. B. L. Altshuler, A. G. Aronov, and D. E. Khmelnitsky, J. Phys. C 15, 7367 (1982).

    Article  ADS  Google Scholar 

  18. X. Wang, M. Zhao, T. He, Zh. Wang, and X. Liu, Appl. Phys.  Lett. 102, 062411 (2013); 

    Article  ADS  Google Scholar 

  19. Zh.-K. Tang, D.-Y. Zhang, L.-M. Tang, L.-L. Wang, and K.-Q. Chen, Eur. Phys. J. B 86, 284 (2013).

    Article  ADS  Google Scholar 

  20. M. Hanl, A. Weichselbaum, T. A. Costi, F. Mallet, L. Saminadayar, C. Bauerle, and J. von Delft, Phys. Rev. B 88, 075146 (2013);

    Article  ADS  Google Scholar 

  21. T. A. Costi, L. Bergqvist, A. Weichselbaum, J. von Delft, T. Micklitz, A. Rosch, P. Mavropoulos, P. H. Dederichs, F. Mallet, L. Saminadayar, and C. Bauerle, Phys. Rev. Lett. 102, 056802 (2009).

    Article  ADS  Google Scholar 

  22. B. K. Rizwana and N. S. Sankeshwar, Diamond Relat. Mater. 49, 87 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was in part performed using equipment of the Resource Center of Electrophysical Methods of the National Research Center “Kurchatov Institute”. The low-temperature measurements were performed at the shared facilities center of the Lebedev Physical Institute, Russian Academy of Sciences. We thank Dr. Dmitrii Smirnov (National High Magnetic Field Laboratory, Tallahassee, FL 32310, United States) for help in performing measurements in a strong magnetic field and Prof. G.M. Min’kov for useful discussions of the results.

Funding

This study was supported by the Russian Foundation for Basic Research, project nos. 19-07-01090 and 20-07-00813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Chumakov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumakov, N.K., Chernykh, I.A., Davydov, A.B. et al. Quantum Coherence and the Kondo Effect in the 2D Electron Gas of Magnetically Undoped AlGaN/GaN High-Electron-Mobility Transistor Heterostructures. Semiconductors 54, 1150–1154 (2020). https://doi.org/10.1134/S1063782620090067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620090067

Keywords:

Navigation