Skip to main content
Log in

Modeling the Spatial Switch-On Dynamics of a Laser Thyristor (λ = 905 nm) Based on an AlGaAs/InGaAs/GaAs Multi-Junction Heterostructure

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A 2D carrier transport model to be used in studying the spatial current dynamics in laser thyristors is presented. The model takes into account such features as optical feedback, impact ionization, and drift velocity saturation in strong electric fields. It is shown that there is current localization during laser-thyristor switch-on. A relationship is demonstrated between the distribution nonuniformity of the control current and its amplitude and position of the initial switch-on region. The time of laser-thyristor switch-on is 13 ns at a feed voltage of 26V, with a time of switch-on spreading over the entire 200-μm stripe width of ~65 ns. These parameters remain invariable irrespective of the switch-on spatial dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. X. Wang, P. Crump, H. Wenzel, A. Liero, T. Hoffmann, A. Pietrzak, C. M. Schultz, A. Klehr, A. Ginolas, S. Einfeldt, and F. Bugge, IEEE J. Quant. Electron. 46, 658 (2010).

    Article  ADS  Google Scholar 

  2. D. A. Veselov, V. A. Kapitonov, N. A. Pikhtin, A. V. Lyu-tetskiy, D. N. Nikolaev, S. O. Slipchenko, Z. N. Sokolova, V. V. Shamakhov, I. S. Shashkin, and I. S. Tarasov, Quantum Electron. 44, 993 (2014).

    Article  ADS  Google Scholar 

  3. Th. Hoffmann, A. Klehr, A. Liero, G. Erbert, and W. Heinrich, Electron. Lett. 51, 83 (2015).

    Article  Google Scholar 

  4. A. Liero, A. Klehr, A. Knigge, and W. Heinrich, Eng. Res. Express 2, 015023 (2020).

    Article  ADS  Google Scholar 

  5. S. O. Slipchenko, A. A. Podoskin, A. V. Rozhkov, N. A. Pikhtin, I. S. Tarasov, T. A. Bagaev, M. V. Zverkov, V. P. Konyaev, Y. V. Kurniavko, M. A. Ladugin, and A. A. Marmalyuk, IEEE Photon. Technol. Lett. 25, 1664 (2013).

    Article  ADS  Google Scholar 

  6. S. O. Slipchenko, A. A. Podoskin, A. V. Rozhkov, N. A. Pikhtin, I. S. Tarasov, T. A. Bagaev, M. A. Ladugin, A. A. Marmalyuk, A. A. Padalitsa, and V. A. Simakov, IEEE Photon. Technol. Lett. 27, 307 (2015).

    Article  ADS  Google Scholar 

  7. A. A. Podoskin, O. S. Soboleva, V. V. Zolotarev, D. A. Veselov, N. A. Pikhtin, I. S. Tarasov, T. A. Bagaev, M. A. Ladugin, A. A. Marmalyuk, V. A. Simakov, and S. O. Slipchenko, in Proceedings of the IEEE 17th International Conference on Laser Optics (LO), St. Petersburg, June 27–July 1, 2016 (2016), p. R3-9.

  8. S. O. Slipchenko, A. A. Podoskin, O. S. Soboleva, D. A. Veselov, V. V. Zolotarev, N. A. Pikhtin, T. A. Bagaev, M. A. Ladugin, A. A. Marmalyuk, V. A. Simakov, and I. S. Tarasov, IEEE Trans. Electron Dev. 63, 83154 (2016).

    ADS  Google Scholar 

  9. S. O. Slipchenko, A. A. Podoskin, O. S. Soboleva, N. A. Pikhtin, T. A. Bagaev, M. A. Ladugin, A. A. Marmalyuk, V. A. Simakov, and I. S. Tarasov, Opt. Express 24, 16500 (2016).

    Article  ADS  Google Scholar 

  10. S. O. Slipchenko, A. A. Podoskin, V. V. Vasil’eva, N. A. Pikhtin, A. V. Rozhkov, A. V. Gorbatyuk, V. V. Zolotarev, D. A. Veselov, A. V. Jabotinskii, A. A. Petukhov, I. S. Tarasov, T. A. Bagaev, M. V. Zverkov, V. P. Konyaev, Y. V. Kurniavko, M. A. Ladugin, A. V. Lobintsov, A. A. Marmalyuk, A. A. Padalitsa, and V. A. Simakov, Semiconductors 48, 697 (2014).

    Article  ADS  Google Scholar 

  11. S. O. Slipchenko, A. A. Podoskin, N. A. Pikhtin, I. S. Tarasov, and A. V. Gorbatyuk, IEEE Trans. Electron Dev. 62, 149 (2015).

    Article  ADS  Google Scholar 

  12. V. S. Yuferev, S. O. Slipchenko, A. A. Podoskin, O. S. Soboleva, N. A. Pikhtin, and I. S. Tarasov, IEEE Trans. Electron Dev. 62, 4091 (2015).

    Article  ADS  Google Scholar 

  13. S. O. Slipchenko, A. A. Podoskin, O. S. Soboleva, N. A. Pikhtin, T. A. Bagaev, M. A. Ladugin, A. A. Marmalyuk, V. A. Simakov, and I. S. Tarasov, J. Appl. Phys. 121, 054502 (2017).

    Article  ADS  Google Scholar 

  14. S. O. Slipchenko, A. A. Podoskin, O. S. Soboleva, N. A. Pikhtin, T. A. Bagaev, M. A. Ladugin, A. A. Marmalyuk, V. A. Simakov, and I. S. Tarasov, J. Appl. Phys. 119, 124513 (2016).

    Article  ADS  Google Scholar 

  15. G. Duan, S. Vainshtein, and J. Kostamovaara, Appl. Phys. Lett. 100, 193505 (2012).

    Article  ADS  Google Scholar 

  16. A. A. Podoskin, O. S. Soboleva, M. S. Zakharov, D. A. Veselov, V. V. Zolotarev, N. A. Pikhtin, I. S. Tarasov, T. A. Bagaev, M. A. Ladugin, A. A. Marmalyuk, and V. A. Simakov, Semicond. Sci. Technol. 30, 125011 (2015).

    Article  ADS  Google Scholar 

  17. S. Selberherr, Analysis and Simulation of Semiconductor Devices (Springer, Wien, New York, 1984).

    Book  Google Scholar 

Download references

Funding

The study was supported by a grant of the President of the Russian Federation for young candidates of science (MK-3208.2019.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Podoskin.

Ethics declarations

The authors state that they have no conflict of interest.

Additional information

Translated by M. Tagirdzhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soboleva, O.S., Golovin, V.S., Yuferev, V.S. et al. Modeling the Spatial Switch-On Dynamics of a Laser Thyristor (λ = 905 nm) Based on an AlGaAs/InGaAs/GaAs Multi-Junction Heterostructure. Semiconductors 54, 575–580 (2020). https://doi.org/10.1134/S1063782620050140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620050140

Keywords:

Navigation