Skip to main content
Log in

Strong Coupling of Excitons in Hexagonal GaN Microcavities

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The GaN planar hexagonal microcavities are grown by the selective vapor-phase epitaxy technique. The spectra are measured by the low-temperature cathodoluminescence method using a scanning electron microscope. The obtained spectra show a huge Rabi splitting (~100 meV). Numerical simulation of the spatial distribution of the intensities of modes in a hexagonal cavity is carried out. Certain modes can have a high spatial localization leading to strong coupling with the exciton and huge Rabi splitting. The fraction of excitons in polariton modes, which correlates with the intensity of exciton radiation associated with these modes, is theoretically calculated for hexagonal-shaped microcavities. Thus, the form of the dependence of the radiation probability on the eigenfrequencies of the structure is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).

    Article  ADS  Google Scholar 

  2. T. A. Fisher, A. M. Afshar, D. M. Whittaker, M. S. Skolnick, J. S. Roberts, G. Hill, and M. A. Pate, Phys. Rev. B 51, 2600 (1995).

    Article  ADS  Google Scholar 

  3. N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, and J. Massies, Phys. Rev. B 68, 153313 (2003).

    Article  ADS  Google Scholar 

  4. A. Kavokin and B. Gil, Appl. Phys. Lett. 72, 2880 (1998).

    Article  ADS  Google Scholar 

  5. M. Radulaski, T. M. Babinec, S. Buckley, A. Rundquist, J. Provine, K. Alassaad, G. Ferro, and J. Vučković, Opt. Express 21, 32623 (2013).

    Article  ADS  Google Scholar 

  6. R. Oulton, Nat. Nanotechnol. 9, 169 (2014).

    Article  ADS  Google Scholar 

  7. G. Pozina, K. A. Ivanov, M. I. Mitrofanov, M. A. Kaliteevski, K. M. Morozov, I. V. Levitskii, G. V. Voznyuk, V. P. Evtikhiev, and S. N. Rodin, Phys. Status Solidi B 256, 1800631 (2019).

    Article  ADS  Google Scholar 

  8. T. Sato, J. Motohisa, J. Noborisaka, S. Hara, and T. Fukui, J. Cryst. Growth 310, 2359 (2008).

    Article  ADS  Google Scholar 

  9. G. Pozina, S. Khromov, C. Hemmingsson, L. Hultman, and B. Monemar, Phys. Rev. B 84, 165213 (2011).

    Article  ADS  Google Scholar 

  10. K. S. Daskalakis, P. S. Eldridge, G. Christmann, E. Trichas, R. Murray, E. Iliopoulos, E. Monroy, N. T. Pelekanos, J. J. Baumberg, and P. G. Savvidis, Appl. Phys. Lett. 102, 101113 (2013).

    Article  ADS  Google Scholar 

  11. R. Loudon, The Quantum Theory of Light (Clarendon, Oxford, 1973), p. 184.

    MATH  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 16-12-10503.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Belonovskii.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belonovskii, A.V., Pozina, G., Levitskii, I.V. et al. Strong Coupling of Excitons in Hexagonal GaN Microcavities. Semiconductors 54, 127–130 (2020). https://doi.org/10.1134/S1063782620010042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782620010042

Keywords:

Navigation