Skip to main content
Log in

A New Algorithm for Measuring the Young’s Modulus of Suspended Nanoobjects by the Bending-Based Test Method of Atomic Force Microscopy

  • NANOSTRUCTURES CHARACTERIZATION
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Atomic force microscopy is a unique technique for probing the mechanical properties of nanostructures. Using the bending-based test method, one can measure the Young’s modulus of the material of a suspended object, a nanobridge. This article presents a new, improved version of the bending-based test method. A special algorithm is elaborated to establish the nanobridge span length and to identify the boundary conditions of the nanobridge fixation. In particular, to realize this algorithm we propose a model of the beam with transformable boundary conditions (between clamped and supported beam model cases) varied by the only fitting parameter. To illustrate the main features of the developed bending-based test method application, the Young’s modulus measurements of mineral chrysotile nanoscrolls, forming the nanobridges across the pores of a track membrane, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Nature’s Nanostructures, Ed. A. S. Barnard and H. Guo (Pan Stanford, Singapore, 2012).

    Google Scholar 

  2. N. E. Mushi, S. Utsel, and L. A. Berglund, Front. Chem. 2, 99 (2014).

    Article  Google Scholar 

  3. S. J. Eichhorn, Soft Matter 7, 303 (2011).

    Article  ADS  Google Scholar 

  4. C. P. Bergman and M. J. de Andrade, Nanostructured Materials for Engineering Applications (Springer, Berlin, 2011).

    Book  Google Scholar 

  5. C. N. R. Rao and A. Govindaraj, Adv. Mater. 21, 4208 (2009).

    Article  Google Scholar 

  6. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003).

    Article  Google Scholar 

  7. A. A. Krasilin, V. N. Nevedomsky, and V. V. Gusarov, J. Phys. Chem. C 121, 12495 (2017).

    Article  Google Scholar 

  8. Z. Tang, N. A. Kotov, S. Magonov, and B. Ozturk, Nat. Mater. 2, 413 (2003).

    Article  ADS  Google Scholar 

  9. I. Pastoriza-Santos, C. Kinnear, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, Nat. Rev. Mater. 3 (10), 375 (2018).

    Article  ADS  Google Scholar 

  10. J. Zhang, X. Liu, G. Neri, and N. Pinna, Adv. Mater. 28, 795 (2016).

    Article  Google Scholar 

  11. N. Domingo, E. Bellido, and D. Ruiz-Molina, Chem. Soc. Rev. 41, 258 (2012).

    Article  Google Scholar 

  12. D. Voiry, H. S. Shin, K. P. Loh, and M. Chhowalla, Nat. Rev. Chem. 2, 0105 (2018).

  13. N. A. Kotov, J. O. Winter, I. P. Clements, E. Jan, B. P. Timko, S. Campidelli, S. Pathak, A. Mazzatenta, C. M. Lieber, M. Prato, R. V. Bellamkonda, G. A. Silva, N. W. S. Kam, F. Patolsky, and L. Ballerini, Adv. Mater. 21, 3970 (2009).

    Article  Google Scholar 

  14. G. Binnig, C. F. Quate, and C. Gerber, Phys. Rev. Lett. 56, 930 (1986).

    Article  ADS  Google Scholar 

  15. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science (Washington, DC, U. S.) 277, 1971 (1997).

    Article  Google Scholar 

  16. Nanotribology and Nanomechanics—An Introduction, Ed. B. Bhushan (Springer, Berlin, Heidelberg, 2005).

    Google Scholar 

  17. J.-P. Salvetat, A. J. Kulik, J.-M. Bonard, G. A. D. Briggs, T. Stöckli, K. Méténier, S. Bonnamy, F. Béguin, N. A. Burnham, and L. Forró, Adv. Mater. 11, 161 (1999).

    Article  Google Scholar 

  18. J.-P. Salvetat, J.-M. Bonard, N. H. Thomson, A. J. Kulik, L. Forró, W. Benoit, and L. Zuppiroli, Appl. Phys. A 69, 255 (1999).

    Article  ADS  Google Scholar 

  19. X.-P. Zheng,  Y.-P. Cao,  B. Li, X.-Q. Feng, and G.-F. Wang, Nanotechnology 21, 205702 (2010).

    Article  ADS  Google Scholar 

  20. S. Timoshenko and J. N. Goodier, Theory of Elasticity (McGraw-Hill, New York, 1970).

    MATH  Google Scholar 

  21. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Pergamon, Oxford, 1970; Nauka, Moscow, 1982).

  22. S. Cuenot, S. Demoustuer-Champagne, and B. Nysten, Phys. Rev. Lett. 85, 1690 (2000).

    Article  ADS  Google Scholar 

  23. A. Kis, Mechanical Properties of Mesoscopic Objects. Thesis (Ecole Polytech. Fed. Lausanne, 2003).

  24. W. Mai and Z. L. Wang, Appl. Phys. Lett. 89, 073112 (2006).

    Article  ADS  Google Scholar 

  25. D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, and R. E. Smalley, Appl. Phys. Lett. 74, 3803 (1999).

    Article  ADS  Google Scholar 

  26. Y. Chen, B. L. Dorgan, D. N. Mcllroy, and D. E. Astona, J. Appl. Phys. 100, 104301 (2006).

    Article  ADS  Google Scholar 

  27. D. Kluge, F. Abraham, S. Schmidt, H.-W. Schmidt, and A. Fery, Langmuir 26, 3020 (2010).

    Article  Google Scholar 

  28. B. Wu, A. Heidelberg, J. J. Boland, J. E. Sader, X. M. Sun, and Y. D. Li, Nano Lett. 6, 468 (2006).

    Article  ADS  Google Scholar 

  29. A. Heidelberg, L. T. Ngo, B. Wu, M. A. Phillips, S. Sharma, T. I. Kamins, J. E. Sader, and J. J. Boland, Nano Lett. 6, 1101 (2006).

    Article  ADS  Google Scholar 

  30. R. Lafay, A. Fernandez-Martinez, G. Montes-Hernandez, A. L. Auzende, and A. Poulain, Am. Mineral. 101, 2666 (2016).

    Article  ADS  Google Scholar 

  31. I. A. Nyapshaev, B. O. Shcherbin, A. V. Ankudinov, Yu. A. Kumzerov, V. N. Nevedomskii, A. A. Krasilin, O. V. Al’myasheva, and V. V. Gusarov, Nanosist.: Fiz., Khim., Mat. 2 (2), 48 (2011).

    Google Scholar 

  32. B. O. Shcherbin, A. V. Ankudinov, A. V. Kiyuts, and O. S. Loboda, Phys. Solid State 56, 531 (2014).

    Article  ADS  Google Scholar 

  33. J. E. Sader, J. W. M. Chon, and P. Mulvaney, Rev. Sci. Instrum. 70, 3967 (1999).

    Article  ADS  Google Scholar 

  34. J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993).

    Article  ADS  Google Scholar 

  35. J. B. Studinka, Int. J. Cem. Compos. Light. Concr. 11, 73 (1989).

    Google Scholar 

  36. J. Aveston, J. Mater. Sci. 4, 625 (1969).

    Article  ADS  Google Scholar 

  37. Y. A. Kumzerov, L. S. Parfen’eva, I. A. Smirnov, A. I. Krivchikov, G. A. Zvyagina, V. D. Fil’, H. Misiorek, J. Mucha, and A. Jezowski, Phys. Solid State 47, 370 (2005).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to Dr. B.O. Shcherbin for conducting AFM studies of chrysotile nanobridges and processing the results obtained, to Dr. M.S. Dunaevskiy for helping in theoretical calculations. The author thanks Ms. T.S. Kunkel, Mr. K.I. Tymoshchuk and especially Dr. A.A. Krasilin and Dr. M.M. Khalisov for the proposed changes in the manuscript.

Funding

The research was supported by the Russian Science Foundation (project no. 19-13-00151).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ankudinov.

Ethics declarations

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ankudinov, A.V. A New Algorithm for Measuring the Young’s Modulus of Suspended Nanoobjects by the Bending-Based Test Method of Atomic Force Microscopy. Semiconductors 53, 1891–1899 (2019). https://doi.org/10.1134/S1063782619140021

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619140021

Keywords:

Navigation