Skip to main content
Log in

Microstructure and Optical Bandgap of Cobalt Selenide Nanofilms

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The purpose of this research is to explore the properties of CoSe nanostructured thin films on glass substrates prepared by a chemical solution deposition method. Special attention is given to study the effects of precursor concentrations (Cobalt(II) acetate, Ammonia and Sodium Selenosulphite), fixing the Co:Se concentration ratio, on the grainy structure and optical properties of the resulting thin films. The structural, chemical composition and morphological characteristics were investigated by X-ray diffraction (XRD), energy dispersive X-ray microanalysis (EDX) and scanning electron microscopy (SEM), respectively. The optical properties were determined by UV–visible spectroscopy determining the optical band gap energy (Eg). According to these results, the average particle diameter was decreased from 119 to 42 nm as the precursor salt concentration was decreased from 0.3 to 0.1 M, being the bigger nanoparticles more spherical. With the reduction of the particle size, a blue shift in the absorption peaks of the UV–visible spectra and an increment of their optical band gap energy (from 1.8 to 3.6 eV) occurred due to confinement effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, J. Phys. Chem. B 110, 19935 (2006).

    Article  Google Scholar 

  2. J. García, V. M. Prida, L. G. Vivas, B. Hernando, E. D. Barriga-Castro, R. Mendoza-Reséndez, and M. Vázquez, J. Mater. Chem. C 3, 4688 (2015).

    Article  Google Scholar 

  3. J. Zhang, H. Yang, K. Yang, J. Fang, S. Zou, Z. Luo, and D. Y. Jung, Adv. Funct. Mater. 20, 3727 (2010).

    Article  Google Scholar 

  4. S. C. Nguyen, Q. Zhang, K. Manthiram, X. Ye, J. P. Lomont, C. B. Harris, and A. P. Alivisatos, ACS Nano 10, 2144 (2016).

    Article  Google Scholar 

  5. R. Mendoza-Reséndez, C. Luna, E. D. Barriga-Castro, P. Bonville, and C. J. Serna, Nanotechnology 23, 225601 (2012).

    Article  ADS  Google Scholar 

  6. C. Luna, A. D. Cuan-Guerra, E. D. Barriga-Castro, N. O. Núñez, and R. Mendoza-Reséndez, Mater. Res. Bull. 80, 44 (2016).

    Article  Google Scholar 

  7. O. Millo, D. Katz, Y. W. Cao, and U. Banin, Phys. Rev. Lett. 86, 5751 (2001).

    Article  ADS  Google Scholar 

  8. D. Dastan, N. Chaure, and M. Kartha, J. Mater. Sci.: Mater. Electron. 28, 7784 (2017).

    Google Scholar 

  9. N. Ghobadi and E. G. Hatam, J. Cryst. Growth 418, 111 (2015).

    Article  ADS  Google Scholar 

  10. N. Ghobadi and F. Dousi, J. Iran. Chem. Soc. 12, 757 (2015).

    Article  Google Scholar 

  11. L. E. Brus, Appl. Phys. A 53, 465 (1991).

    Article  ADS  Google Scholar 

  12. M. Dhanasekar, G. Bakiyaraj, and K. Rammurthi, Int. J. Chem. Tech. Res. 7, 1057 (2015).

    Google Scholar 

  13. Y. N. Ko, S. H. Choi, and Y. C. Kang, ACS Appl. Mater. Interfaces 8, 6449 (2016).

    Article  Google Scholar 

  14. J. B. Shi, P. F. Wu, C. T. Kao, M. W. Lee, et al., Cryst. Res. Technol. 50, 155 (2015).

    Article  Google Scholar 

  15. J. Masud, A. T. Swesi, W. P. R. Liyanage, and M. Nath, ACS Appl. Mater. Interfaces 8, 17292 (2016).

    Article  Google Scholar 

  16. R. S. Mane and C. D. Lokhande, Mater. Chem. Phys. 65, 1 (2000).

    Article  Google Scholar 

  17. P. Pramanik, S. Bhattacharya, and P. K. Basu, Thin Solid Films 149, L81 (1987).

    Article  Google Scholar 

  18. A. U. Ubale, Y. S. Sakhare, M. V. Bhute, M. R. Belkhedkar, and A. Singh, Solid State Sci. 16, 134e142 (2013).

  19. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction (Prentice-Hall, Upper Saddle River, NJ, 2001).

    Google Scholar 

  20. D. Dastan, J. Atomic, Molecular, Condensate & Nano Physics 2, 109–114 (2015).

  21. D. Dastan, Appl. Phys. A. 123, 699 (2017).

  22. C. Bai, G. Franchin, H. Elsayed, A. Conte, and P. Colombo, J. Eur. Ceram. Soc. 36, 4243 (2016).

    Article  Google Scholar 

  23. Y. Zhang, D. Rodrigue, and A. Ait-Kadi, J. Appl. Polym. Sci. 90, 2111 (2003).

    Article  Google Scholar 

  24. Y. Feng and N. Alonso-Vante, Electrochim. Acta. 72, 129 (2012).

    Article  Google Scholar 

  25. M. R. Gao, X. Cao, Q. Gao, Y. F. Xu, Y. R. Zheng, J. Jiang, and S. H. Yu, ACS Nano 8, 3970 (2014).

    Article  Google Scholar 

  26. M. R. Gao, W. T. Yao, H. B. Yao, and S. H. Yu, J. Am. Chem. Soc. 131, 7486 (2009).

    Article  Google Scholar 

  27. J. B. Shi, P. F. Wu, C. T. Kao, M. W. Lee, C. C. Chan, P. C. Yang, C. L. Lin, R. Y. Huang, Y. J. Huang, S. K. Lin, F. C. Cheng, H. S. Lin, and H. W. Lee, Cryst. Res. Technol. 50 (2), 1 (2015).

    Article  Google Scholar 

  28. L. Zhu, M. Teo, P. C. Wong, K. C. Wong, I. Naritab, F. Ernst, K. A. R. Mitchell, and S. A. Campbell, Appl. Catal., A 386, 157 (2010).

  29. D. Dastan, S. L. Panahi, and N. B. Chaure, J. Mater. Sci.: Mater. Electron. 27(12), 12291 (2016).

  30. J. Tauc and J. Menth, J. Non-Cryst. Solids 569, 8 (1972).

    Google Scholar 

  31. N. Ghobadi, M. Ganji, C. Luna, A. Arman, and A. Ahmadpourian, J. Mater. Sci.: Mater. Electron. 27, 2800 (2016).

    Google Scholar 

  32. S. Kundu and P. K. Biswas, Chem. Phys. Lett. 414, 107 (2005).

    Article  ADS  Google Scholar 

  33. A. D. Yoffe, Adv. Phys. 50, 1 (2001).

    Article  ADS  Google Scholar 

  34. D. Dastan, S. L. Panahi, Ashish P. Yengntiwar, and A. G. Banpurkar, Adv. Sci. Lett. 22, 950 (2016).

  35. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Chichester, UK, 1998).

    Book  Google Scholar 

  36. S. Naderi, A. Ghaderi, S. Solaymani, and M. M. Golzan, Eur. Phys. J.: Appl. Phys. 58, 20401 (2012).

    ADS  Google Scholar 

  37. L. Balan, J. Malval, R. Schneider, and D. Burget, J. Mater. Chem. Phys. 104, 417 (2007).

    Article  Google Scholar 

  38. G. D. Christian and J. E. O’Reilly, Instrumental Analysis (Prentice-Hall, New Jersey, 1986).

    Google Scholar 

  39. B. Xue, V. Nazabal, M. Piasecki, L. Calvez, A. Wojciechowski, P. Rakus, P. Czaja, and I. V. Kityk, Mater. Lett. 73, 14 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar Rezaee.

Ethics declarations

FINANCIAL DISCLOSURE

Neither author has a financial or proprietary interest in any material or method mentioned.

COMPETING INTEREST

The authors declare that they have no competing interest.

ORCID

Sahar Rezaee, https://orcid.org/0000-0001-5034-0810

Ali Arman, https://orcid.org/0000-0003-1246-0453

Ştefan Ţălu, http://orcid.org/0000-0003-1311-7657.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghobadi, N., Hafezi, F., Naderi, S. et al. Microstructure and Optical Bandgap of Cobalt Selenide Nanofilms. Semiconductors 53, 1751–1758 (2019). https://doi.org/10.1134/S1063782619130074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619130074

Keywords:

Navigation