Skip to main content
Log in

Locally Strained Ge/SOI Structures with an Improved Heat Sink as an Active Medium for Silicon Optoelectronics

  • XXIII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 11–14, 2019
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results on the formation of locally strained Ge microstructures on silicon-on-insulator (SOI) substrates and investigation of their optical properties are presented. Suspended Ge structures are formed by optical lithography and plasmachemical and selective chemical etching using the “stress concentration” approach. To provide a heat sink from Ge microstructures, their formation scheme is modified so as to provide the mechanical contact of a part of the suspended microstructure with lower-lying layers. To implement this scheme, SOI substrates with a thin upper Si layer 100 nm in thickness are used. It is shown using the measurements of Raman spectra depending on the pumping power that local heating in such structures decreases. Measurements of the microphotoluminescence spectra show a considerable increase in the signal intensity from strained regions of Ge microstructures as well as the possibility of increasing the maximal optical pumping power (not leading to irreversible changes) for microstructures, in which the mechanical contact of the strained part with lower-lying layers is provided, when compared with suspended structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. M. ElKurdi, G. Fishman, S. Sauvage, and P. Boucaud, J. Appl. Phys. 107, 013710 (2010).

    Article  ADS  Google Scholar 

  2. M. Virgilio, C. L. Manganelli, G. Grosso, G. Pizzi, and G. Capellini, Phys. Rev. B 87, 235313 (2013).

    Article  ADS  Google Scholar 

  3. C. Boztug, J. R. Sanchez-Perez, F. Cavallo, M. G. Lagally, and R. Paiella, ACS Nano 8, 3136 (2014).

    Article  Google Scholar 

  4. R. Geiger, T. Zabel, and H. Sigg, Front. Mater. 2, 52 (2015).

    Article  Google Scholar 

  5. Y. Huo, H. Lin, R. Chen, M. Makarova, Y. Rong, M. Li, T. I. Kamins, J. Vuckovic, and J. S. Harris, Appl. Phys. Lett. 98, 011111 (2011).

    Article  ADS  Google Scholar 

  6. J. Menéndez and J. Kouvetakis, Appl. Phys. Lett. 85, 1175 (2004).

    Article  ADS  Google Scholar 

  7. R. A. Minamisawa, M. J. Süess, R. Spolenak, J. Faist, C. David, J. Gobrecht, K. K. Bourdelle, and H. Sigg, Nat. Commun. 3, 1096 (2012).

    Article  ADS  Google Scholar 

  8. M. J. Süess, R. Geiger, R. A. Minamisawa, G. Schiefler, J. Frigerio, D. Chrastina, G. Isella, R. Spolenak, J. Faist, and H. Sigg, Nat. Photon. 7, 466 (2013).

    Article  ADS  Google Scholar 

  9. D. S. Sukhdeo, D. Nam, J.-H. Kang, M. L. Brongersma, and K. C. Saraswat, Photon. Res. 2, A8 (2014).

    Article  Google Scholar 

  10. A. Gassenq, K. Guilloy, G. Osvaldo Dias, N. Pauc, D. Rouchon, J.-M. Hartmann, J. Widiez, S. Tardif, F. Rieutord, J. Escalante, I. Duchemin, Y.-M. Niquet, R. Geiger, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, V. Reboud, and V. Calvo, Appl. Phys. Lett. 107, 191904 (2015).

    Article  ADS  Google Scholar 

  11. M. ElKurdi, M. Prost, A. Ghrib, S. Sauvage, X. Checoury, G. Beaudoin, I. Sagnes, G. Picardi, R. Ossikovski, and P. Boucaud, ACS Photon. 3, 443 (2016).

  12. R. W. Millar, K. Gallacher, J. Frigerio, A. Ballabio, A. Bashir, I. MacLaren, G. Isella, and D. J. Paul, Opt. Express 24, 4365 (2016).

    Article  ADS  Google Scholar 

  13. S. Bao, D. Kim, C. Onwukaeme, S. Gupta, K. Saraswat, K. H. Lee, Y. Kim, D. Min, Y. Jung, H. Qiu, H. Wang, E. A. Fitzgerald, C. S. Tan, and D. Nam, Nat. Commun. 8, 1845 (2017).

    Article  ADS  Google Scholar 

  14. A. Elbaz, M. ElKurdi, A. Aassime, S. Sauvage, X. Checoury, I. Sagnes, C. Baudot, F. Boeuf, and P. Boucaud, APL Photon. 3, 106102 (2018).

  15. D. Nam, D. S. Sukhdeo, S. Gupta, J.-H. Kang, M. L. Brongersma, and K. C. Saraswat, IEEE J. Sel. Top. Quant. Electron. 20, 1500107 (2014).

    Google Scholar 

  16. N. Tas, T. Sonnenberg, H. Jansen, R. Legtenberg, and M. Elwenspoek, J. Micromech. Microeng. 6, 385 (1996).

    Article  ADS  Google Scholar 

  17. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).

    Article  ADS  Google Scholar 

  18. J.-M. Hartmann, A. Abbadie, J. P. Barnes, J. M. Fedeli, T. Billon, and L. Vivien, J. Cryst. Growth 312, 532 (2010).

    Article  ADS  Google Scholar 

  19. D. V. Yurasov, A. I. Bobrov, V. M. Daniltsev, A. V. Novikov, D. A. Pavlov, E. V. Skorokhodov, M. V. Shaleev, and P. A. Yunin, Semiconductors 49, 1415 (2015).

    Article  ADS  Google Scholar 

  20. D. V. Yurasov, A. V. Antonov, M. N. Drozdov, V. B. Schmagin, K. E. Spirin, and A. V. Novikov, J. Appl. Phys. 118, 145701 (2015).

    Article  ADS  Google Scholar 

  21. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007).

    Article  ADS  Google Scholar 

  22. M. R. Barget, M. Virgilio, G. Capellini, Y. Yamamoto, and T. Schroeder, J. Appl. Phys. 121, 245701 (2017).

    Article  ADS  Google Scholar 

  23. J. Frigerio, A. Ballabio, K. Gallacher, V. Giliberti, L. Baldassarre, R. Millar, R. Milazzo, L. Maiolo, A. Minotti, F. Bottegoni, P. Biagioni, D. J. Paul, M. Ortolani, A. Pecora, E. Napolitani, and G. Isella, J. Phys. D: Appl. Phys. 50, 465103 (2017).

    Article  Google Scholar 

  24. Y. Yamamoto, M. R. Barget, G. Capellini, N. Taoka, M. Virgilio, P. Zaumseil, A. Hesse, T. Schroeder, and B. Tillack, Mater. Sci. Semicond. Proc. 70, 111 (2017).

    Article  Google Scholar 

  25. D. V. Yurasov, A. V. Antonov, M. N. Drozdov, P. A. Yunin, B. A. Andreev, P. A. Bushuykin, N. A. Baydakova, and A. V. Novikov, J. Cryst. Growth 491, 26 (2018).

    Article  ADS  Google Scholar 

  26. D. V. Yurasov, A. V. Novikov, N. A. Baidakova, E. E. Morozova, P. A. Yunin, D. V. Shengurov, A. V. Antonov, M. N. Drozdov, and Z. F. Krasilnik, Semicond. Sci. Technol. 33, 124019 (2018).

    Article  ADS  Google Scholar 

  27. A. V. Novikov, D. V. Yurasov, E. E. Morozova, E. V. Skorokhodov, V. A. Verbus, A. N. Yablonskii, N. A. Baidakova, N. S. Gusev, K. E. Kudryavtsev, A. V. Nezhdanov, and A. I. Mashin, Semiconductors 52, 1442 (2018).

    Article  ADS  Google Scholar 

  28. A. Gassenq, S. Tardif, K. Guilloy, I. Duchemin, N. Pauc, J.-M. Hartmann, D. Rouchon, J. Widiez, Y. M. Niquet, L. Milord, T. Zabel, H. Sigg, J. Faist, A. Chelnokov, F. Rieutord, V. Reboud, and V. Calvo, J. Appl. Phys. 121, 055702 (2017).

    Article  ADS  Google Scholar 

  29. T. R. Hart, R. L. Aggarwal, and B. Lax, Phys. Rev. B 1, 638 (1970).

    Article  ADS  Google Scholar 

  30. S. Safran and B. Lax, J. Phys. Chem. Solids 36, 753 (1975).

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the Russian Scientific Foundation, project no. 17-72-10207, using equipment of the Joint Usage Center “Physics and Technology of Micro- and Nanostructures” at the Institute for Physics of Microstructures, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Yurasov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurasov, D.V., Baidakova, N.A., Verbus, V.A. et al. Locally Strained Ge/SOI Structures with an Improved Heat Sink as an Active Medium for Silicon Optoelectronics. Semiconductors 53, 1324–1328 (2019). https://doi.org/10.1134/S1063782619100257

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619100257

Keywords:

Navigation