Skip to main content
Log in

On the Amplification of Terahertz Radiation by High-Q Resonant Plasmons in a Periodic Graphene Bilayer under Plasmon-Mode Anticrossing

  • XXIII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 11–14, 2019
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The spectrum of amplification of terahertz radiation in a structured active graphene bilayer consisting of two identical periodic graphene microribbon arrays separated by a thin dielectric barrier layer is theoretically investigated. The system supports optical and acoustic plasmon modes. The resonant frequencies of the optical and acoustic modes change oppositely with the dielectric-layer thickness, which allows plasmon-mode anticrossing. It is shown that the investigated graphene structure is characterized by a strong plasmon response and giant terahertz-radiation amplification at plasma resonance frequencies in the vicinity of the anticrossing between the optical and acoustic plasmon modes at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. Peres, and A. K. Geim, Science (Washington, DC, U. S.) 320, 1308 (2008).

    Article  ADS  Google Scholar 

  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London, U.K.) 438, 197 (2005).

    Article  ADS  Google Scholar 

  3. Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature (London, U.K.) 438, 201 (2005).

    Article  ADS  Google Scholar 

  4. J. Chen, M. Badioli, P. Alonso-González, S. Thongrattanasiri, F. Huth, R. Hillenbrand, and F. H. L. Koppens, Nature (London, U.K.) 487, 77 (2012).

    Article  ADS  Google Scholar 

  5. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. Castro Neto, C. N. Lau, F. Keilmann, and D. N. Basov, Nature (London, U.K.) 487, 82 (2012).

    Article  ADS  Google Scholar 

  6. V. Ryzhii, M. Ryzhii, and T. Otsuji, J. Appl. Phys. 101, 083114 (2007).

    Article  ADS  Google Scholar 

  7. A. Satou, F. T. Vasko, and V. Ryzhii, Phys. Rev. B 7, 1158431 (2008).

    Google Scholar 

  8. A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, and V. Ryzhii, Appl. Phys. Express 2, 092301 (2009).

    Article  ADS  Google Scholar 

  9. A. Satou, T. Otsuji, and V. Ryzhii, Jpn. J. Appl. Phys. 50, 070116 (2011).

    Article  ADS  Google Scholar 

  10. A. Satou, V. Ryzhii, Y. Kurita, and T. Otsuji, J. Appl. Phys. 113, 143108 (2013).

    Article  ADS  Google Scholar 

  11. F. Rana, IEEE Trans. Nanotechnol. 7, 91 (2008).

    Article  ADS  Google Scholar 

  12. S. Boubanga-Tombet, S. Chan, T. Watanabe, A. Satou, V. Ryzhii, and T. Otsuji, Phys. Rev. B 85, 035443 (2012).

    Article  ADS  Google Scholar 

  13. T. Winzer, E. Malic, and A. Knorr, Phys. Rev. B 87, 165413 (2013).

    Article  ADS  Google Scholar 

  14. R. Jago, T. Winzer, and E. Malic, Phys. Status Solidi B 252, 2456 (2015).

    Article  ADS  Google Scholar 

  15. G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, and D. Svintsov, Phys. Rev. B 97, 205411 (2018).

    Article  ADS  Google Scholar 

  16. T. Li, L. Luo, M. Hupalo, J. Zhang, M. C. Tringides, J. Schmalian, and J. Wang, Phys. Rev. Lett. 108, 167401 (2012).

    Article  ADS  Google Scholar 

  17. I. Gierz, M. Mitrano, J. C. Petersen, C. Cacho, I. C. E. Turcu, E. Springate, A. Stöhr, A. Köhler, U. Starke, and A. Cavalleri, J. Phys.: Condens. Matter 27, 164204 (2015).

    ADS  Google Scholar 

  18. M. T. Mihnev, F. Kadi, C. J. Divin, T. Winzer, S. Lee, C.-H. Liu, Z. Zhong, C. Berger, W. A. de Heer, E. Malic, A. Knorr, and T. B. Norris, Nat. Commun. 7, 11617 (2016).

    Article  ADS  Google Scholar 

  19. I. Gierz, J. Electron. Spectrosc. Rel. Phenom. 219, 53 (2017).

    Article  Google Scholar 

  20. J. H. Strait, H. Wang, S. Shivaraman, V. Shields, M. Spencer, and F. Rana, Nano Lett. 11, 4902 (2011).

    Article  ADS  Google Scholar 

  21. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, and V. Ryzhii, J. Phys.: Condens. Matter 23, 145302 (2011).

    ADS  Google Scholar 

  22. C. H. Gan, H. S. Chu, and E. P. Li, Phys. Rev. B 85, 125431 (2012).

    Article  ADS  Google Scholar 

  23. L. A. Falkovsky and A. A. Varlamov, Eur. Phys. J. B 56, 281 (2007).

    Article  ADS  Google Scholar 

  24. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  25. V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, and M. S. Shur, Phys. Rev. B 86, 195437 (2012).

    Article  ADS  Google Scholar 

Download references

Funding

This study was carried out in the framework of the state task and supported in part by the Russian Foundation for Basic Research, project no. 18-37-20004.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. V. Polischuk or V. V. Popov.

Ethics declarations

The authors declare they have no conflict of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polischuk, O.V., Fateev, D.V. & Popov, V.V. On the Amplification of Terahertz Radiation by High-Q Resonant Plasmons in a Periodic Graphene Bilayer under Plasmon-Mode Anticrossing. Semiconductors 53, 1211–1216 (2019). https://doi.org/10.1134/S106378261909015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261909015X

Keywords:

Navigation