Skip to main content
Log in

DLTS Investigation of the Energy Spectrum of Si:Mg Crystals

  • ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Electrically active centers in n-type magnesium-doped silicon crystals are studied by deep-level transient spectroscopy (DLTS). Magnesium is introduced by diffusion from a metal film on the surface at 1100°C. It is found that two levels with a similar concentration of ~6 × 1014 cm–3 dominate in the DLTS spectrum; the value approximately corresponds to the interstitial magnesium (Mgi) concentration expected from diffusion conditions and published data on the Hall effect. The dependence of the electron emission rate from these levels on the electric-field strength agrees qualitatively with the Poole–Frenkel effect, which indicates the donor nature of both levels, although the absolute value of the effect differs from theoretical value. The activation energies of these levels found by the extrapolation of emission rates measured at various temperatures to zero field are 112 and 252 meV, which coincides within the accuracy with energies of ground states of the first and second donor levels of Mg determined previously from optical absorption. Thus, it is shown that when using high-quality initial material and the selected diffusion mode, interstitial magnesium atoms are the dominant centers with levels in the upper half of the band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. K. Franks and J. B. Robertson, Solid State Commun. 5, 479 (1967).

    Article  ADS  Google Scholar 

  2. L. T. Ho and A. K. Ramdas, Phys. Rev. B 5, 462 (1972).

    Article  ADS  Google Scholar 

  3. A. Thilderkvist, M. Kleverman, and H. G. Grimmeiss, Phys. Rev. B 49, 16338 (1994).

    Article  ADS  Google Scholar 

  4. R. J. S. Abraham, A. DeAbreu, K. J. Morse, V. B. Shuman, L. M. Portsel, A. N. Lodygin, Yu. A. Astrov, N. V. Abrosimov, S. G. Pavlov, H.-W. Hübers, S. Simmons, and M. L. W. Thewalt, Phys. Rev. B 98, 045202 (2018).

    Article  ADS  Google Scholar 

  5. J. E. Baxter and G. Ascarelli, Phys. Rev. B 7, 2630 (1973).

    Article  ADS  Google Scholar 

  6. V. Pajot, G. Taravella, and J. P. Bouchaud, Appl. Phvs. Lett. 23, 189 (1973).

    Article  ADS  Google Scholar 

  7. A. L. Lin, J. Appl. Phys. 53, 6989 (1982).

    Article  ADS  Google Scholar 

  8. S. G. Pavlov, N. Deßmann, A. Pohl, et al., Phys. Rev. B 94, 075208 (2016).

    Article  ADS  Google Scholar 

  9. Yu. A. Astrov, V. B. Shuman, L. M. Portsel, A. N. Lodygin, S. G. Pavlov, N. V. Abrosimov, V. N. Shastin, and H.-W. Hübers, Phys. Status Solidi A 214, 1700192 (2017).

    Article  ADS  Google Scholar 

  10. H. Sigmund, J. Electrochem. Soc. 129, 2809 (1982).

    Article  Google Scholar 

  11. V. B. Shuman, A. N. Lodygin, L. M. Portsel, A. A. Yakovleva, N. V. Abrosimov, and Yu. A. Astrov, Semiconductors 53, 296 (2019).

  12. I. V. Antonova, A. V. Vasil’ev, V. I. Panov, S. A. Smagulova, L. S. Smirnov, and S. S. Shaimeev, Sov. Phys. Semicond. 21, 419 (1987).

    Google Scholar 

  13. S. Häßler and G. Pensl, Mater. Sci. Forum 143–147, 123 (1994).

    Google Scholar 

  14. J. Bollmann, M. Thieme, and J. Weber (ISOLDE Collab.), Phys. B (Amsterdam, Neth.) 376–377, 97 (2006).

  15. E. Ohta and M. Sakata, Solid-State Electron. 22, 677 (1979).

    Article  ADS  Google Scholar 

  16. V. B. Shuman, A. A. Lavrent’ev, Yu. A. Astrov, A. N. Lodygin, and L. M. Portsel, Semiconductors 51, 1 (2017).

    Article  ADS  Google Scholar 

  17. L. Dobaczewski, A. R. Peaker, and K. Bonde Nielsen, J. Appl. Phys. 96, 4689 (2004).

    Article  ADS  Google Scholar 

  18. A. L. Endrös, W. Krühler, and J. Grabmaier, Phys. B (Amsterdam, Neth.) 170, 365 (1991).

  19. O. V. Feklisova and N. Yarykin, Semicond. Sci. Technol. 12, 742 (1997).

    Article  ADS  Google Scholar 

  20. J. Frenkel, Phys. Rev. 54, 647 (1938).

    Article  ADS  Google Scholar 

  21. L. C. Kimerling and J. L. Benton, Appl. Phys. Lett. 39, 410 (1981).

    Article  ADS  Google Scholar 

  22. J. L. Hartke, J. Appl. Phys. 39, 4671 (1968).

    Article  Google Scholar 

  23. M. Ieda, G. Sawa, and S. Kato, J. Appl. Phys. 42, 3737 (1971).

    Article  ADS  Google Scholar 

  24. B. H. Abakumov, B. I. Perel’, and I. N. Yassievich, Nonradiative Recombination in Semiconductors (Inst. Yad. Fiz. RAN, St.-Petersburg, 1997; North-Holland, Amsterdam, 1991).

Download references

FUNDING

The work at the Institute of Microelectronics Technology and High Purity Materials of the Russian Academy of Sciences was fulfilled within the scope of the state order no. 007-00220-18-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Astrov.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yarykin, N., Shuman, V.B., Portsel, L.M. et al. DLTS Investigation of the Energy Spectrum of Si:Mg Crystals. Semiconductors 53, 789–794 (2019). https://doi.org/10.1134/S1063782619060290

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619060290

Navigation