Skip to main content
Log in

Simulated Contrast of Two Dislocations

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A three-dimensional Monte Carlo simulation algorithm is used to study the contrast of two dislocations perpendicular to the irradiated surface of an n-doped silicon sample in the electron beam induced current mode. The dislocations are positioned in the irradiation trajectory, and each of both is considered as a cylinder where the minority carrier diffusion length varies abruptly from a low inside dislocations up to a high value outside dislocations. The EBIC contrast was obtained by simulating the random diffusion of carriers generated at point-like sources randomly distributed within the generation volume. Results are analyzed on the basis of change in the generation volume in the bulk of the sample and of carrier trapping process inside dislocations. The EBIC contrast increases with the increase of the electron beam energy. It also increases when the minority diffusion length inside dislocations, or their separating distance decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Avella, E. de la Puente, J. Jimenez, A. Castaldini, A. Cavallini, and L. Polenta, J. Cryst. Growth 210, 220 (2000).

    Article  ADS  Google Scholar 

  2. M. Rinio, S. Peters, M. Werner, A. Lawerenz, and H. J. Möller, Solid State Phenom. 82–84, 701 (2002).

    Google Scholar 

  3. D. Ballutaud, A. Rivière, M. Rusu, S. Bourdais, and A. Slaoui, Thin Solid Films 403–404, 549 (2002).

    Article  Google Scholar 

  4. G. Jia, W. Seifert, T. Mchedlidze, T. Arguirov, M. Kittler, T. Wilhelm, and M. Reiche, Superlatt. Microstruct. 45, 314 (2009).

    Article  ADS  Google Scholar 

  5. D. Wee, G. Parish, and B. Nener, Phys. Status Solidi C 7, 2566 (2010).

    Article  ADS  Google Scholar 

  6. E. Hieckmann, M. Nacke, M. Allardt, Y. Bodrov, P. Chekhonin, W. Skrotzki, and J. Weber, J. Vis. Exp. 111, 1 (2016).

    Google Scholar 

  7. C. Donolato, J. Appl. Phys. 84, 2656 (1998).

    Article  ADS  Google Scholar 

  8. M. Lax, J. Appl. Phys. 49, 2796 (1978).

    Article  ADS  Google Scholar 

  9. M. Imaizumi, T. Ito, M. Yamaguchi, and K. Kaneko, J. Appl. Phys. 81, 7635 (1997).

    Article  ADS  Google Scholar 

  10. C. Donolato, Appl. Phys. Lett. 34, 80 (1979).

    Article  ADS  Google Scholar 

  11. J. L. Farvacque and B. Sieber, Rev. Phys. Appl. 25, 353 (1990).

    Article  Google Scholar 

  12. C. Donolato, J. Appl. Phys. 70, 7657 (1991).

    Article  ADS  Google Scholar 

  13. L. Pasemann, J. Phys. Lett. 69, 6387 (1991).

    Google Scholar 

  14. V. V. Sirotkin, E. B. Yakimov, and S. I. Zaitsev, Mater. Sci. Eng. B 42, 176 (1996).

    Article  Google Scholar 

  15. D. C. Joy and S. Luo, Scanning 11, 176 (1989).

    Article  Google Scholar 

  16. D. C. Joy, Scanning Microsc. 5, 329 (1991).

    Google Scholar 

  17. R. Shimizu and J. Z. Ding, Rep. Prog. Phys. 55, 487 (1992).

    Article  ADS  Google Scholar 

  18. M. Stemmer, Mater. Sci. Eng. B 24, 180 (1994).

    Article  Google Scholar 

  19. N. Tabet and M. Ledra, Mater Sci. Eng. B 42, 181 (1996).

    Article  Google Scholar 

  20. N. Tabet, Solid State Phenom. 63–64, 89 (1998).

    Article  ADS  Google Scholar 

  21. N. Tabet, Semicond. Sci. Technol. 13, 1392 (1998).

    Article  ADS  Google Scholar 

  22. M. Ledra and N. Tabet, J. Phys. D: Appl. Phys. 38, 3845 (2005).

    Article  ADS  Google Scholar 

  23. T. E. Everhart and P. H. Hoff, J. Appl. Phys. 42, 5837 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Ledra or A. El Hdiy.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ledra, M., El Hdiy, A. Simulated Contrast of Two Dislocations. Semiconductors 53, 442–446 (2019). https://doi.org/10.1134/S1063782619040195

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619040195

Navigation