Skip to main content
Log in

Stimulated Emission in the 1.3–1.5 μm Spectral Range from AlGaInAs Quantum Wells in Hybrid Light-Emitting III–V Heterostructures on Silicon Substrates

  • XXII INTERNATIONAL SYMPOSIUM “NANOPHYSICS AND NANOELECTRONICS”, NIZHNY NOVGOROD, MARCH 12–15, 2018
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Hybrid laser structures with AlGaInAs quantum wells are grown by metalorganic vapor phase epitaxy on Ge/Si(100) “virtual” substrates using GaAs and InP buffer layers. Stimulated emission is achieved under optical pumping of the prepared samples in the range of 1.3–1.5 μm at liquid-nitrogen temperature. The stimulated-emission threshold is 30–70 kW/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. G. Roelkens, A. Abassi, P. Cardile, et al., Photonics 2, 969 (2015).

    Article  Google Scholar 

  2. E. Tournie, L. Cerutti, J.-B. Rodriguez, H. Liu, J. Wu, and S. Chen, MRS Bull. 41, 218 (2016).

    Article  Google Scholar 

  3. J. Wang, X. Ren, C. Deng, H. Hu, Yu. He, Zh. Cheng, H. Ma, Q. Wang, Y. Huang, X. Duan, and X. Yan, J. Lightwave Technol. 33, 3163 (2015).

    Article  ADS  Google Scholar 

  4. V. Ya. Aleshkin, N. V. Baidus, A. A. Dubinov, A. G. Fefelov, Z. F. Krasilnik, K. E. Kudryavtsev, S. M. Nekorkin, A. V. Novikov, D. A. Pavlov, I. V. Samartsev, E. V. Skorokhodov, M. V. Shaleev, A. A. Sushkov, A. N. Yablonskiy, P. A. Yunin, and D. V. Yurasov, Appl. Phys. Lett. 109, 061111 (2016).

    Article  ADS  Google Scholar 

  5. R. Soref, Silicon 2, 1 (2010).

    Article  Google Scholar 

  6. P. Dong, Y.-K. Chen, G.-H. Duan, and D. T. Neilson, Nanophotonics 3, 215 (2014).

    Article  Google Scholar 

  7. L. W. Sung and H. H. Lin, Appl. Phys. Lett. 83, 1107 (2003).

    Article  ADS  Google Scholar 

  8. P. Sundgren, J. Berggren, P. Goldman, and M. Hammar, Appl. Phys. Lett. 87, 071104 (2005).

    Article  ADS  Google Scholar 

  9. A. Y. Liu, C. Zhang, J. Norman, A. Shyder, D. Lubyshev, J. M. Fastenau, A. W. K. Liu, A. C. Gossard, and J. E. Bowers, Appl. Phys. Lett. 104, 041104 (2014).

    Article  ADS  Google Scholar 

  10. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Snowton, and H. Liu, Nat. Photon. 10, 307 (2016).

    Article  ADS  Google Scholar 

  11. H. Liu, Q. Wang, J. Chen, K. Liu, and X. Ren, J. Cryst. Growth 455, 168 (2016).

    Article  ADS  Google Scholar 

  12. R. A. Salii, N. A. Kalyuzhnyy, N. V. Kryzhanovskaya, M. V. Maximov, S. A. Mintairov, A. M. Nadtochiy, V. N. Nevedomskiy, and A. E. Zhukov, J. Phys.: Conf. Ser. 816, 012024 (2017).

    Google Scholar 

  13. S. O. Slipchenko, A. V. Lyutetski, N. A. Pikhtin, N. V. Fetisova, A. Yu. Leshko, Yu. A. Ryaboshtan, E. G. Golikova, and I. S. Tarasov, Tech. Phys. Lett. 29, 115 (2003).

    Article  ADS  Google Scholar 

  14. M. Razeghi, M. Defour, R. Blondeau, F. Omnes, P. Maurel, O. Acher, F. Brillouet, J. C. C. Fan, and J. Salerno, Appl. Phys. Lett. 53, 2389 (1988).

    Article  ADS  Google Scholar 

  15. M. Sugo, H. Mori, M. Tachikawa, Y. Itoh, and M. Yamamoto, Appl. Phys. Lett. 57, 593 (1990).

    Article  ADS  Google Scholar 

  16. K. Matsumoto et al., Appl. Phys. Express 9, 062701 (2016).

    Article  ADS  Google Scholar 

  17. L. Colace, G. Mastini, F. Galluzzi, G. Assanto, G. Capellini, L. di Gaspare, E. Palange, and F. Evangelisti, Appl. Phys. Lett. 72, 3175 (1998).

    Article  ADS  Google Scholar 

  18. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).

    Article  ADS  Google Scholar 

  19. D. V. Yurasov, A. I. Bobrov, V. M. Daniltsev, A. V. Novikov, D. A. Pavlov, E. V. Skorokhodov, M. V. Shaleev, and P. A. Yunin, Semiconductors 49, 1415 (2015).

    Article  ADS  Google Scholar 

  20. V. Ya. Aleshkin, N. V. Baidus, A. A. Dubinov, Z. F. Krasilnik, S. M. Nekorkin, A. V. Novikov, A. V. Rykov, D. V. Yurasov, and A. N. Yablonskiy, Semiconductors 51, 663 (2017).

    Article  ADS  Google Scholar 

  21. P. F. Fewster, X-ray Scattering from Semiconductors and Other Materials, 3rd ed. (World Scientific, Singapore, 2015).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation (project no. 14-12-00644) on the equipment of the Unique Stand “Femtospectrum” of the Shared Service Center of the Institute for Physics of Microstructures of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. E. Kudryatvsev.

Additional information

Translated by A. Kazantsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryatvsev, K.E., Dubinov, A.A., Aleshkin, V.Y. et al. Stimulated Emission in the 1.3–1.5 μm Spectral Range from AlGaInAs Quantum Wells in Hybrid Light-Emitting III–V Heterostructures on Silicon Substrates. Semiconductors 52, 1495–1499 (2018). https://doi.org/10.1134/S1063782618110143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618110143

Keywords

Navigation