Skip to main content
Log in

Dielectric Properties of Nanocrystalline Tungsten Oxide in the Temperature Range of 223–293 K

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The dielectric properties of nanocrystalline tungsten oxide are studied in the temperature range of 223–293 K and in the frequency range ν = 10–2–106 Hz. Powders of WO3 with particle sizes of 110, 150, and 200 nm are prepared by the heat treatment of ammonium paratungstate at various temperatures. It is established that the frequency dependences of the conductivity for all samples increase with an increase in frequency, while the polarization characteristics ε'(ν) and ε"(ν) decrease. It is found that the frequency dependences of the conductivity are described by a function of the form νs with an index in the range of (0.83–0.90) ± 0.01, which is characteristic of the “hopping” mechanism of charged-particle motion (complexes) over localized states confined by potential barriers and structural defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Granqvist, Handbook of Electrochromic Materials (Elsevier, Amsterdam, 1995).

    Google Scholar 

  2. B. Urasinska-Wojcik, T. A. Vincent, M. F. Chowdhury, and J. W. Gardner, Sens. Actuators, B 239, 1051 (2017).

    Article  Google Scholar 

  3. L. Wang, A. Teleki, S. E. Pratsinis, and P. I. Gouma, Chem. Mater. 20, 4794 (2008).

    Article  Google Scholar 

  4. S. S. Kalaga, S. S. Mali, D. S. Dalavi, A. I. Inamdar, H. Im, and P. S. Patil, Synth. Met. 161, 1105 (2011).

    Article  Google Scholar 

  5. S. E. M. Svensson and C. G. Granqvist, Thin Solid Films 126, 31 (1985).

    Article  ADS  Google Scholar 

  6. B. Gavanier, F. M. Miehalak, and J. R. Owen, Ionics 3, 265 (1997).

    Article  Google Scholar 

  7. G. Leftheriotis, G. Syrrokostas, and P. Yianoulis, Sol. Energy Mater. Sol. Cells 94, 2304 (2010).

    Article  Google Scholar 

  8. A. Pawlicka, Recent Patents Nanotechnol. 3, 177 (2009).

    Article  Google Scholar 

  9. S. Long, H. Zhou, S. Bao, Y. Xin, X. Cao, and P. Jin, RCS Adv. 6, 106435 (2016).

    Google Scholar 

  10. Ch. Ma, Ch. Zhou, Zh. Zhang, B. Wang, and L. Wei, Mater. Sci. Forum 445–446, 141 (2004).

    Article  Google Scholar 

  11. E. K. H. Salje, Eur. J. Solid State Inorg. Chem. 31, 651 (1994).

    Google Scholar 

  12. A. Aird, M. C. Domeneghetti, F. Mazzi, V. Tazzoli, and E. K. H. Salje, J. Phys.: Condens. Matter 10, L569 (1998).

    ADS  Google Scholar 

  13. Sh. Sawada, J. Phys. Soc. Jpn. 11, 1237 (1956).

    Article  ADS  Google Scholar 

  14. L. Wang, A. Teleki, S. E. Pratsinis, and P. I. Gouma, Chem. Mater. 20, 4794 (2008).

    Article  Google Scholar 

  15. P. M. Woodward, A. W. Sleight, and T. Vogt, J. Solid State Chem. 131, 9 (1997).

    Article  ADS  Google Scholar 

  16. A. Elshafie, H. H. Afify, and A. Abdel-All, Phys. Status Solidi 174, 301 (1999).

    Article  ADS  Google Scholar 

  17. M. M. El-Nahass, H. A. M. Ali, M. Saadeldin, and M. Zaghllol, Phys. B (Amsterdam, Neth.) 407, 4453 (2012).

    Article  ADS  Google Scholar 

  18. M. G. Hutchins, O. Abu-Alkhair, M. M. El-Nahass, and K. Abdel-Hady, J. Non-Cryst. Solids 353, 4137 (2007).

    Article  ADS  Google Scholar 

  19. H. Frohlich, Theory of Dielectrics: Dielectric Constant and Dielectric Loss (Clarendon, Oxford, 1949).

    MATH  Google Scholar 

  20. P. T. Oreshkin, Physics of Semiconductors and Dielectrics (Vyssh. Shkola, Moscow, 1977) [in Russian].

    Google Scholar 

  21. B. Jagan Mohan Reddy, G. Paran Jyothi, M. V. Ramana Reddy, M. N. Chary, and Narasimha Reddy, Phys. Status Solidi 137, 241 (1993).

    Article  ADS  Google Scholar 

  22. N. Ashcroft and N. Mermin, Solid State Physics (Brooks Cole, Pacific Grove, 1976), Vol. 2.

    MATH  Google Scholar 

  23. A. Feltz, Amorphous Inorganic Materials and Glasses (Wiley, New York, 1993; Mir, Moscow, 1986).

    Google Scholar 

  24. Yu. M. Poplavko, L. P. Pereverzeva, and I. P. Raevskii, Physics of Active Dielectrics, Ed. by V. P. Sakhnenko (Yuzh. Fed. Univ., Rostov-on-Don, 2009) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kozyukhin.

Additional information

Original Russian Text © S.A. Kozyukhin, S.A. Bedin, P.G. Rudakovskaya, O.S. Ivanova, V.K. Ivanov, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 7, pp. 745–750.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozyukhin, S.A., Bedin, S.A., Rudakovskaya, P.G. et al. Dielectric Properties of Nanocrystalline Tungsten Oxide in the Temperature Range of 223–293 K. Semiconductors 52, 885–890 (2018). https://doi.org/10.1134/S1063782618070114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618070114

Navigation