Skip to main content
Log in

Floquet Engineering of Gapped 2D Materials

  • XXV International Symposium “Nanostructures: Physics and Technology”, Saint Petersburg, June 26–30, 2017. Quantum Wells, Quantum Wires, Quantum Dots, and Band Structure
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

It is demonstrated theoretically that the interaction of gapped 2D materials (gapped graphene and transition metal dichalchogenide monolayers) with a strong high-frequency electromagnetic field (dressing field) crucially changes the band structure of the materials. As a consequence, the renormalized band structure of the materials drastically depends on the field polarization. Particularly, a linearly polarized dressing field always decreases band gaps, whereas a circularly polarized field breaks the equivalence of band valleys in different points of the Brillouin zone and can both increase and decrease corresponding band gaps. It is shown also that a dressing field can turn both the band gaps and the spin splitting of the bands into zero. As a result, the dressing field can serve as an effective tool to control spin and valley properties of the materials in various optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Hanngi, in Quantum Transport and Dissipation, Ed. by T. Dittrich, P. Hanggi, G.-L. Ingold, B. Kramer, G. Schon, and W. Zwerger (Wiley, Weinheim, 1998), p. 249.

  2. S. Morina, O. V. Kibis, A. A. Pervishko, and I. A. Shelykh, Phys. Rev. B 91, 155312 (2015).

    Article  ADS  Google Scholar 

  3. A. A. Pervishko, O. V. Kibis, S. Morina, and I. A. Shelykh, Phys. Rev. B 92, 205403 (2015).

    Article  ADS  Google Scholar 

  4. K. Dini, O. V. Kibis, and I. A. Shelykh, Phys. Rev. B 93, 235411 (2016).

    Article  ADS  Google Scholar 

  5. K. Kristinsson, O. V. Kibis, S. Morina, and I. A. Shelykh, Sci. Rep. 6, 20082 (2016).

    Article  ADS  Google Scholar 

  6. O. V. Kibis, S. Morina, K. Dini, and I. A. Shelykh, Phys. Rev. B 93, 115420 (2016).

    Article  ADS  Google Scholar 

  7. O. V. Kibis, K. Dini, I. V. Iorsh, and I. A. Shelykh, Phys. Rev. 95, 125401 (2017).

    Article  ADS  Google Scholar 

  8. A. C. Ferrari et al., Nanoscale 7, 4598 (2015).

    Article  ADS  Google Scholar 

  9. A. Kormanyos et al., 2D Mater. 2, 022001 (2015).

    Article  Google Scholar 

  10. D. A. Romanov and O. V. Kibis, Phys. Lett. A 178, 335 (1993).

    Article  ADS  Google Scholar 

  11. O. V. Kibis, JETP Lett. 66, 588 (1997).

    Article  ADS  Google Scholar 

  12. O. V. Kibis, Phys. Lett. A 237, 292 (1998).

    Article  ADS  Google Scholar 

  13. O. V. Kibis, Phys. Lett. A 244, 432 (1998).

    Article  ADS  Google Scholar 

  14. D. Lawton, A. Nogaret, M. V. Makarenko, O. V. Kibis, S. J. Bending, and M. Henini, Physica E 13, 699 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Kibis.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kibis, O.V., Dini, K., Iorsh, I.V. et al. Floquet Engineering of Gapped 2D Materials. Semiconductors 52, 523–525 (2018). https://doi.org/10.1134/S1063782618040176

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618040176

Navigation