Skip to main content
Log in

Formation of low-dimensional structures in the InSb/AlAs heterosystem

  • Fabrication, Treatment, and Testing of Materials and Structures
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Low-dimensional quantum-well and nanoisland heterostructures formed in the InSb/AlAs system by molecular-beam epitaxy are studied by transmission electron microscopy and steady-state photoluminescence spectroscopy. The structures are grown under conditions of alternate In and Sb deposition (the socalled atomic-layer epitaxy mode) and the simultaneous deposition of materials (the traditional molecularbeam epitaxy mode). In both modes of growth, at a nominal amount of the deposited material in a single layer, large-sized (200 nm–1 μm) imperfect islands arranged on the In x Al1 – x Sb y As1–y quantum-well layer are formed. In the heterostructures grown under conditions of atomic layer epitaxy, the islands are surrounded by ring-shaped arrays of much smaller (~10 nm), coherently strained islands consisting of the In x Al1 – x Sb y As1 – y alloy as well. The composition of the alloy is defined by the intermixing of Group-V materials in the stage of InSb deposition and by the intermixing of materials because of the segregation of In and Sb atoms during overgrowth of the InSb layer by an AlAs layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. M. Wang, Self Assembled Quantum Dots (Springer, New York, 2008).

    Book  Google Scholar 

  2. A. N. Semenov, O. G. Lyublinskaya, V. A. Solov’ev, B. Ya. Mel’tser, and S. V. Ivanov, Semiconductors 42, 74 (2007).

    Article  ADS  Google Scholar 

  3. V. A. Solov’ev, A. A. Toropov, B. Ya. Meltser, Ya. V. Terent’ev, R. N. Kyutt, A. A. Sitnikova, A. N. Semenov, S. V. Ivanov, E. M. Goldys, and P. S. Kop’ev, Semiconductors 36, 816 (2002).

    Article  ADS  Google Scholar 

  4. A. N. Semenov, B. Ya. Meltser, V. A. Solov’ev, T. A. Komissarova, A. A. Sitnikova, D. A. Kirylenko, A. M. Nadtochyi, T. V. Popova, P. S. Kop’ev, and S. V. Ivanov, Semiconductors 45, 1327 (2011).

    Article  ADS  Google Scholar 

  5. A. Marent, M. Geller, A. Schliwa, D. Feise, K. Pötschke, D. Bimberg, N. Akçay, and N. Önkan, Appl. Phys. Lett. 91, 242109 (2007).

    Article  ADS  Google Scholar 

  6. T. S. Shamirzaev, Semiconductors 45, 96 (2011).

    Article  ADS  Google Scholar 

  7. T. S. Shamirzaev, D. S. Abramkin, A. K. Gutakovskii, and M. A. Putyato, JETP Lett. 95, 534 (2012).

    Article  ADS  Google Scholar 

  8. D. S. Abramkin, K. M. Rumynin, A. K. Bakarov, D. A. Kolotovkina, A. K. Gutakovskii, and T. S. Shamirzaev, JETP Lett. 103, 692 (2016).

    Article  ADS  Google Scholar 

  9. T. S. Shamirzaev, A. M. Gilinsky, A. K. Kalagin, A. V. Nenashev, and K. S. Zhuravlev, Phys. Rev. B 76, 155309 (2007).

    Article  ADS  Google Scholar 

  10. T. S. Shamirzaev, A. V. Nenashev, A. K. Gutakovskii, A. K. Kalagin, K. S. Zhuravlev, M. Larsson, and P. O. Holtz, Phys. Rev. B 78, 085323 (2008).

    Article  ADS  Google Scholar 

  11. T. S. Shamirzaev, A. V. Nenashev, and K. S. Zhuravlev, Appl. Phys. Lett. 92, 213101 (2008).

    Article  ADS  Google Scholar 

  12. T. S. Shamirzaev, J. Debus, D. S. Abramkin, D. Dunker, D. R. Yakovlev, D. V. Dmitriev, A. K. Gutakovskii, L. S. Braginsky, K. S. Zhuravlev, and M. Bayer, Phys. Rev. B 84, 155318 (2011).

    Article  ADS  Google Scholar 

  13. A. V. Khaetskii and Yu. V. Nazarov, Phys. Rev. B 61, 12639 (2000).

    Article  ADS  Google Scholar 

  14. D. Dunker, T. S. Shamirzaev, J. Debus, D. R. Yakovlev, K. S. Zhuravlev, and M. Bayer, Appl. Phys. Lett. 101, 142108 (2012).

    Article  ADS  Google Scholar 

  15. T. S. Shamirzaev, J. Debus, D. R. Yakovlev, M. M. Glazov, E. L. Ivchenko, and M. Bayer, Phys. Rev. B 94, 045411 (2016).

    Article  ADS  Google Scholar 

  16. I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Article  ADS  Google Scholar 

  17. W. A. Harrison, Electronic Structure and Properties of Solids (and W. H. Freeman, San Francisco, 1980).

    Google Scholar 

  18. P. M. Petroff, A. C. Gossard, and W. Wiegmann, Appl. Phys. Lett. 45, 620 (1984).

    Article  ADS  Google Scholar 

  19. E. Michel, G. Singh, S. Slivken, C. Besikci, P. Bove, I. Ferguson, and M. Razegh, Appl. Phys. Lett. 65, 3338 (1994).

    Article  ADS  Google Scholar 

  20. P. Boonpeng, S. Kiravittaya, S. Thainoi, S. Panyakeow, and S. Ratanathammaphan, J. Cryst. Growth 378, 435 (2013).

    Article  ADS  Google Scholar 

  21. T. Mano, K. Watanabe, S. Tsukamoto, H. Fujioka, M. Oshima, and N. Koguchi, J. Cryst. Growth 209, 504 (2000).

    Article  ADS  Google Scholar 

  22. F. K. LeGoues, J. Tersoff, M. C. Reuter, M. Hammar, and R. Tromp, Appl. Phys. Lett. 67, 2317 (1995).

    Article  ADS  Google Scholar 

  23. M. Knelangen, V. Consonni, A. Trampert, and H. Riechert, Nanotechnology 21, 245705 (2010).

    Article  ADS  Google Scholar 

  24. N. Grandjean and J. Massies, J. Cryst. Growth 134, 51 (1993).

    Article  ADS  Google Scholar 

  25. C. W. Snyder, B. G. Orr, D. Kesler, and L. M. Sander, Phys. Rev. Lett. 66, 3032 (1991).

    Article  ADS  Google Scholar 

  26. C. W. Snyder, J. F. Mansfield, and B. G. Orr, Phys. Rev. B 46, 9551 (1992).

    Article  ADS  Google Scholar 

  27. D. E. Jesson, S. J. Pennycook, J.-M. Baribeau, and D. C. Houghton, Phys. Rev. Lett. 71, 1744 (1993).

    Article  ADS  Google Scholar 

  28. P. Muller and R. Kern, Appl. Surf. Sci. 102, 6 (1996).

    Article  ADS  Google Scholar 

  29. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Phys. Rev. B 68, 075409 (2003).

    Article  ADS  Google Scholar 

  30. K. M. Chen, D. E. Jesson, S. J. Pennycook, T. Thundat, and R. J. Warmack, Phys. Rev. B 56, R1700 (1997).

    Article  ADS  Google Scholar 

  31. Ch. Heyn, Phys. Rev. Lett. 64, 165306 (2001).

    Google Scholar 

  32. F. J. Falth, S. F. Yoon, and E. A. Fitzgerald, Nanotechnology 19, 455606 (2008).

    Article  ADS  Google Scholar 

  33. D. S. Abramkin, E. A. Emelyanov, M. A. Putyato, A. K. Gutakovskii, A. S. Kozhukhov, B. R. Semyagin, V. V. Preobrazhenskii, and T. S. Shamirzaev, Bull. Russ. Acad. Sci.: Phys. 80, 17 (2016).

    Article  Google Scholar 

  34. R. Stepniewski, S. Huant, G. Martinez, and B. Etienne, Phys. Rev. B 40, 9772 (1989).

    Article  ADS  Google Scholar 

  35. F. Ding, Y. H. Chen, C. G. Tang, B. Xu, and Z. G. Wang, Phys. Rev. B 76, 125404 (2007).

    Article  ADS  Google Scholar 

  36. T. S. Shamirzaev, D. S. Abramkin, A. V. Nenashev, K. S. Zhuravlev, F. Trojanek, B. Dzurnvak, and P. Maly, Nanotechnology 21, 55703 (2010).

    Article  Google Scholar 

  37. R. Eykholt and D. J. Srolovitz, J. Appl. Phys. 60, 1793 (1986).

    Article  ADS  Google Scholar 

  38. A. M. Dabiran and P. I. Cohen, J. Cryst. Growth 150, 23 (1995).

    Article  ADS  Google Scholar 

  39. I. N. Krivorotov, T. Chang, G. D. Gilliland, L. P. Fu, K. K. Bajaj, and D. J. Wolford, Phys. Rev. B 58, 10687 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Abramkin.

Additional information

Original Russian Text © D.S. Abramkin, A.K. Bakarov, M.A. Putyato, E.A. Emelyanov, D.A. Kolotovkina, A.K. Gutakovskii, T.S. Shamirzaev, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 9, pp. 1282–1288.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abramkin, D.S., Bakarov, A.K., Putyato, M.A. et al. Formation of low-dimensional structures in the InSb/AlAs heterosystem. Semiconductors 51, 1233–1239 (2017). https://doi.org/10.1134/S1063782617090020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617090020

Navigation