Skip to main content
Log in

Thermoelectric materials for different temperature levels

  • XV International Conference “Thermoelectrics and Their Applications—2016”, St. Petersburg, November 15–16, 2016
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Based on the analysis of current scientific publications, materials for thermoelectric devices operating at different temperatures within 100–1300 K are reviewed. The main attention is paid to the fabrication of nanostructured thermoelectric materials. It is established that the most promising techniques for the synthesis of such materials are melt spinning, spark plasma sintering, and extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Belay, S. A. Zayakin, and V. S. Zemskov, J. Adv. Mater. 1, 158 (1994).

    Google Scholar 

  2. W. Yim and A. Amith, Solid State Electron. 15, 1141 (1972).

    Article  ADS  Google Scholar 

  3. N. A. Sidorenko and L. D. Ivanova, Inorg. Mater. 37, 331 (2001).

    Article  Google Scholar 

  4. L. D. Ivanova, L. I. Petrova, Yu. V. Granatkina, V. S. Zemskov, O. V. Sokolov, S. Ya. Skipidarov, V. A. Kurganov, and V. V. Podbel’skii, Inorg. Mater. 47, 459 (2011).

    Article  Google Scholar 

  5. L. D. Ivanova and Yu. V. Granatkina, Inorg. Mater. 36, 672 (2000).

    Article  Google Scholar 

  6. L. D. Ivanova, L. I. Petrova, Yu. V. Granatkina, V. G. Leontyev, A. S. Ivanov, S. A. Varlamov, Yu. P. Prilepo, A. M. Sychev, A. G. Chuiko, and I. V. Bashkov, Inorg. Mater. 49, 120 (2013).

    Article  Google Scholar 

  7. D. Li, R. R. Sun, and X. Y. Qin, Intermetallics 19, 2002 (2011).

    Article  Google Scholar 

  8. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, J. Appl. Phys. 94, 102111 (2009).

  9. L. Bulat, I. A. Drabkin, V. V. Karatayev, V. B. Osvenskii, Yu. N. Parkhomenko, D. A. Pshenay-Severin, and A. I. Sorokin, J. Electron. Mater. 43, 2121 (2014).

    Article  ADS  Google Scholar 

  10. W. Xie, Nano Lett. 13, 597 (2010).

    Google Scholar 

  11. L. D. Ivanova, L. I. Petrova, Yu. V. Granatkina, D. S. Nikulin, and O. A. Raikina, Inorg. Mater. 52, 248 (2016).

    Article  Google Scholar 

  12. S. Wang, W. Xie, H. Li, and X. Tang, Intermetallics 19, 1024 (2011).

    Article  Google Scholar 

  13. L. D. Ivanova, L. I. Petrova, Yu. V. Granatkina, V. S. Zemskov, O. B. Sokolov, S. Ya. Skipidarov, and N. I. Duvankov, Inorg. Mater. 45, 123 (2009).

    Article  Google Scholar 

  14. L. D. Ivanova, L. I. Petrova, Yu. V. Granatkina, S. A. Kichik, I. S. Marakushev, and A. A. Mel’nikov, Inorg. Mater. 51, 741 (2015).

    Article  Google Scholar 

  15. F. Li, X. Huang, Z. Sun, J. Ding, J. Jiang, W. Jiang, and L. Chen, J. Alloys Compd. 509, 4769 (2011).

    Article  Google Scholar 

  16. D. Vasilevskiy, M. S. Dawood, J.-P. Masse, S. Turenne, and R. A. Masut, J. Electron. Mater. 39, 1890 (2010).

    Article  ADS  Google Scholar 

  17. Y. Pei, A. LaLonde, S. Iwanaga, and G. J. Snyder, Energy Environ. Sci. 4, 2090 (2011).

    Article  Google Scholar 

  18. A. LaLonde, Y. Pei, and G. J. Snyder, Energy Environ. Sci. 4, 2085 (2011).

    Article  Google Scholar 

  19. J. Graff, S. Zhu, T. Holgate, J. Peng, J. He, and T. M. Tritt, J. Electron. Mater. 40, 696 (2011).

    Article  ADS  Google Scholar 

  20. J. Yang, R. Chen, X. Fan, S. Bao, and W. Zhu, J. Alloys Compd. 407, 330 (2006).

    Article  Google Scholar 

  21. X. Shi, L. D. Chen, S. Q. Bai, X. Y. Huang, X. Y. Zhao, Q. Yao, and C. Uher, J. Appl. Phys. 102, 103709 (2007).

    Article  ADS  Google Scholar 

  22. Q. Zhang, F. Cao, W. Liu, K. Lukas, B. Yu, S. Chen, C. Opeil, D. Broido, G. Chen, and Z. Ren, J. Am. Chem. Soc. 134, 10031 (2012).

    Article  Google Scholar 

  23. P. F. P. Poudeu, A. Gue[acute]guen, C.-I. Wu, T. Hogan, and M. G. Kanatzidis, Chem. Mater. 22, 1046 (2010).

    Article  Google Scholar 

  24. X. Yan, G. Joshi, W. Liu, Y. Lan, H. Wang, S. Lee, J. W. Simonson, S. J. Poon, T. M. Tritt, G. Chen, and Z. F. Ren, Nano Lett. 11, 556 (2011).

    Article  ADS  Google Scholar 

  25. J. Androulakis, K. F. Hsu, R. Pcionek, H. Kong, C. Uher, J. J. D’Angelo, A. Downey, T. Hogan, and M. G. Kanatzidis, Adv. Mater. 18, 1170 (2006).

    Article  Google Scholar 

  26. A. Bentien, V. Pacheco, S. Paschen, Y. Grin, and F. Steglich, Phys. Rev. B 71, 165206 (2000).

    Article  ADS  Google Scholar 

  27. T. Caillat, J.-P. Fleurial, and F. Borshchevsky, J. Phys. Chem. Solids 58, 1119 (1997).

    Article  ADS  Google Scholar 

  28. S. Katsuyama, R. Matsuo, and M. Ito, J. Alloys Compd. 428, 262 (2007).

  29. K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki, Nature (London) 422, 53 (2003).

    Article  ADS  Google Scholar 

  30. N. Kh. Abrikosov and L. D. Ivanova, Izv. Akad. Nauk SSSR, Neorg. Mater. 9, 827 (1973).

    Google Scholar 

  31. L. D. Ivanova, Inorg. Mater. 47, 965 (2011).

    Article  Google Scholar 

  32. L. D. Ivanova, Termoelektrichestvo, No. 3, 63 (2009).

    Google Scholar 

  33. W. Luo, H. Li, Y. Yan, Z. Lin, X. Tang, Q. Zhang, and C. Uher, Intermetallics 19, 404 (2011).

    Article  Google Scholar 

  34. V. K. Zaitsev and M. I. Fedorov, in CRC Handbook of Thermoellectrics, Ed. by D. M. Rowe (CRC, New York, 2005), p. 29.

  35. W. Liu, Q. Zheng, X. Tang, H. Li, and J. Sharp, J. Mater. Chem. 22, 13653 (2012).

    Article  Google Scholar 

  36. L. Zheng, X. Zhang, H. Liu, S. Li, Z. Zhou, Q. Lu, J. Zhang, and F. Zhang, J. Alloys Compd. 671, 452 (2016).

    Article  Google Scholar 

  37. T. Kajitani, K. Takahashi, K. Oku, M. Saito, and H. Suzuki, in Proceedings of the 14th European Conference on Thermoelectrics ECT 2016, PC1.2, p. 286.

    Google Scholar 

  38. M. Otake, K. Sato, O. Sygiyama, and S. Kaneko, Solid State Ionics 172, 523 (2004).

    Article  Google Scholar 

  39. A. J. Minnich, H. Lee, X. W. Wang, G. Joshi, M. S.Dresselhaus, Z. F. Ren, G. Chen, and D. Vashaee, Phys. Rev. B 80, 155327 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Ivanova.

Additional information

Original Russian Text © L.D. Ivanova, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 7, pp. 948–951.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, L.D. Thermoelectric materials for different temperature levels. Semiconductors 51, 909–912 (2017). https://doi.org/10.1134/S1063782617070132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617070132

Navigation