Skip to main content
Log in

Classical magnetoresistance of a two-component system induced by thermoelectric effects

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Magnetotransport in a two-dimensional two-component system consisting of electrons and holes with the same concentrations is studied. Balance equations to describe charge carrier and heat transfer are derived from the classical kinetic equation. The charge-carrier density and temperature distributions and electric-current densities are calculated by solving the balance equations for a long strip sample. In a sufficiently high magnetic field, regions of increased and decreased charge-carrier density, temperature, and fluxes are formed near the sample edges. This leads to nontrivial positive magnetoresistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Hatke, M. A. Zudov, J. L. Reno, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 85, 081304 (2012).

    Article  ADS  Google Scholar 

  2. R. G. Mani, A. Kriisa, and W. Wegscheider, Sci. Rep. 3, 2747 (2013).

    Article  ADS  Google Scholar 

  3. L. Bockhorn, P. Barthold, D. Schuh, W. Wegscheider, and R. J. Haug, Phys. Rev. B 83, 113301 (2011).

    Article  ADS  Google Scholar 

  4. Q. Shi, P. D. Martin, Q. A. Ebner, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 89, 201301 (2014).

    Article  ADS  Google Scholar 

  5. I. A. Dmitriev, A. D. Mirlin, D. G. Polyakov, and M. A. Zudov, Rev. Mod. Phys. 84, 1709 (2012).

    Article  ADS  Google Scholar 

  6. A. L. Friedman, J. L. Tedesco, P. M. Campbell, J. C. Culbertson, E. Aifer, F. K. Perkins, R. L. Myers-Ward, J. K. Hite, C. R. Eddy, G. G. Jernigan, and D. K. Gaskill, Nano Lett. 10, 3962 (2010).

    Article  ADS  Google Scholar 

  7. R. S. Singh, X. Wang, W. C. Ariando, and A. T. S. Wee, Appl. Phys. Lett. 101, 183105 (2012).

    Article  ADS  Google Scholar 

  8. M. Veldhorst, M. Snelder, M. Hoek, C. G. Molenaar, D. P. Leusink, A. A. Golubov, H. Hilgenkamp, and A. Brinkman, Phys. Status Solidi RRL 7, 26 (2013).

    Article  Google Scholar 

  9. W. Wang, Y. Du, G. Xu, X. Zhang, E. Liu, Z. Liu, Y. Shi, J. Chen, G. Wu, and X. Zhang, Sci. Rep. 3, 2181 (2013).

    Article  ADS  Google Scholar 

  10. G. M. Gusev, E. B. Olshanetsky, Z. D. Kvon, N. N. Mikhailov, and S. A. Dvoretsky, Phys. Rev. B 87, 081311 (2013).

    Article  ADS  Google Scholar 

  11. F. Kisslinger, C. Ott, C. Heide, E. Kampert, B. Butz, E. Spiecker, S. Shallcross, and H. B. Weber, Nat. Phys. 11, 650 (2015).

    Article  Google Scholar 

  12. S. Wiedmann, A. Jost, C. Thienel, C. Brune, P. Leubner, H. Buhmann, L. W. Molenkamp, J. C. Maan, and U. Zeitler, Phys. Rev. B 91, 205311 (2015).

    Article  ADS  Google Scholar 

  13. C. M. Wang and X. L. Lei, Phys. Rev. B 92, 125303 (2015).

    Article  ADS  Google Scholar 

  14. G. Yu. Vasileva, D. Smirnov, Yu. L. Ivanov, Yu. B. Vasilyev, P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Yu. Kachorovskii, M. Titov, B. N. Narozhny, and R. J. Haug, Phys. Rev. B 93, 195430 (2016).

    Article  ADS  Google Scholar 

  15. The Quantum Hall Effect, Ed. by R. E. Prange and S. M. Girvin, Graduate Texts in Contemporary Physics) (Yale Univ. Press, New Haven, 1990).

  16. Y. M. Galperin, Quantum Transport, Lecture Notes (Lund Univ., 1998).

    Google Scholar 

  17. Y. V. Nazarov and Y. M. Blanter, Quantum Transport, Introduction to Nanoscience (Cambridge Univ. Press, New York, 2009).

    Book  Google Scholar 

  18. A. D. Mirlin, D. G. Polyakov, F. Evers, and P. Wolfle, Phys. Rev. Lett. 87, 126805 (2001).

    Article  ADS  Google Scholar 

  19. A. Dmitriev, M. Dyakonov, and R. Jullien, Phys. Rev. B 64, 233321 (2001).

    Article  ADS  Google Scholar 

  20. V. V. Cheianov, A. P. Dmitriev, and V. Y. Kachorovskii, Phys. Rev. B 68, 201304 (2003).

    Article  ADS  Google Scholar 

  21. Y. M. Beltukov and M. I. Dyakonov, Phys. Rev. Lett. 116, 176801 (2016).

    Article  ADS  Google Scholar 

  22. P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, V. Y. Kachorovskii, B. N. Narozhny, M. Schütt, and M. Titov, Phys. Rev. Lett. 114, 156601 (2015).

    Article  ADS  Google Scholar 

  23. B. N. Narozhny, I. V. Gornyi, M. Titov, M. Schütt, and A. D. Mirlin, Phys. Rev. B 91, 035414 (2015).

    Article  ADS  Google Scholar 

  24. M. Hruska and B. Spivak, Phys. Rev. B 65, 033315 (2002).

    Article  ADS  Google Scholar 

  25. P. S. Alekseev, Phys. Rev. Lett. 117, 166601 (2016).

    Article  ADS  Google Scholar 

  26. M. V. Cheremisin, J. Exp. Theor. Phys. 92, 357 (2001).

    Article  ADS  Google Scholar 

  27. M. V. Cheremisin, Physica E 27, 151 (2005).

    Article  ADS  Google Scholar 

  28. M. V. Cheremisin, J. Exp. Theor. Phys. 100, 597 (2005).

    Article  ADS  Google Scholar 

  29. M. V. Cheremisin, Physica E 27, 151 (2005).

    Article  ADS  Google Scholar 

  30. V. Karpus, Sov. Phys. Semicond. 20, 6 (1986).

    Google Scholar 

  31. P. S. Alekseev, M. S. Kipa, V. I. Perel, and I. N. Yassievich, J. Exp. Theor. Phys. 106, 806 (2008).

    Article  ADS  Google Scholar 

  32. M. S. Keepa, P. S. Alekseev, and I. N. Yassievich, Semiconductors 44, 198 (2010).

    Article  ADS  Google Scholar 

  33. P. S. Alekseev, A. P. Dmitriev, I. V. Gornyi, and V. Y. Kachorovskii, Phys. Rev. B 87, 65432 (2013)

    Article  Google Scholar 

  34. G. Y. Vasil’eva, P. S. Alekseev, Y. L. Ivanov, et al., JETP Lett. 96, 471 (2012).

    Article  ADS  Google Scholar 

  35. M. M. Müller and S. Sachdev, Phys. Rev. B 78, 115419 (2008)

    Article  ADS  Google Scholar 

  36. M. S. Foster and I. L. Aleiner, Phys. Rev. B 79, 085415 (2009)

    Article  ADS  Google Scholar 

  37. D. Svintsov, V. Vyurkov, S. Yurcenko, T. Otsuji, and V. Ryzhii, J. Appl. Phys. 111, 083715 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. S. Alekseev.

Additional information

Original Russian Text © P.S. Alekseev, I.V. Gornyi, A.P. Dmitriev, V.Yu. Kachorovskii, M.A. Semina, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 6, pp. 798–808.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, P.S., Gornyi, I.V., Dmitriev, A.P. et al. Classical magnetoresistance of a two-component system induced by thermoelectric effects. Semiconductors 51, 766–776 (2017). https://doi.org/10.1134/S1063782617060033

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617060033

Navigation