Skip to main content
Log in

Room-temperature operation of quantum cascade lasers at a wavelength of 5.8 μm

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The room-temperature generation of multiperiod quantum-cascade lasers (QCL) at a wavelength of 5.8 μm in the pulsed mode is demonstrated. The heterostructure of a quantum-cascade laser based on a heterojunction of InGaAs/InAlAs alloys is grown by molecular-beam epitaxy and incorporates 60 identical cascades. The threshold current density of the stripe laser 1.4 mm long and 22 μm wide is ~4.8 kA/cm2 at a temperature of 303 K. The maximum power of the optical-radiation output from one QCL face, recorded by a detector, is 88 mW. The actual optical-power output from one QCL face is no less than 150 mW. The results obtained and possible ways of optimizing the structure of the developed quantum-cascade lasers are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. F. Kazarinov and R. A. Suris, Sov. Phys. Semicond. 5, 707 (1971).

    Google Scholar 

  2. A. Y. Cho, Appl. Phys. Lett. 19, 467 (1971).

    Article  ADS  Google Scholar 

  3. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, Science 264 (5158), 553 (1994).

    Article  ADS  Google Scholar 

  4. J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, S. N. G. Chu, and A. Y. Cho, Appl. Phys. Lett. 72, 680 (1998).

    Article  ADS  Google Scholar 

  5. M. Fischer, G. Scalari, C. Walther, and J. Faist, J. Cryst. Growth 311, 1939 (2009).

    Article  ADS  Google Scholar 

  6. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, Science 295 (5553), 301 (2002).

    Article  ADS  Google Scholar 

  7. C. Gmachi, F. Capasso, A. Tredicucci, D. L. Sivxo, R. Kohler, A. L. Hutchinson, and A. Y. Cho, IEEE J. Sel. Top. Quantum Electron. 5, 808 (1999).

    Article  Google Scholar 

  8. O. Fedosenko, M. Chashnikova, S. Machulik, J. Kischkat, M. Klinkmu[umlaut]ller, A. Aleksandrova, G. Monastyrskyi, M. P. Semtsiv, and W. T. Masselink, J. Cryst. Growth 323, 484 (2011).

    Article  ADS  Google Scholar 

  9. A. Lyakh, C. Pflüg, L. Diehl, Q. J. Wang, F. Capasso, X. J. Wang, J. Y. Fan, T. Tanbun-Ek, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, Appl. Phys. Lett. 92, 111110 (2008).

    Article  ADS  Google Scholar 

  10. X. Chen, L. Cheng, D. Guo, F. S. Choa, and T. Worchesky, Proc. SPIE 7953, 79531Z (2011).

    Article  Google Scholar 

  11. C. A. Wang, A. K. Goyal, R. K. Huang, J. P. Donnelly, D. R. Calawa, G. W. Turner, A. Sanchez-Rubio, A. Hsu, Q. Hu, and B. Williams, MA 02420-9108. http://www.rle.mit.edu/thz/documents/Wang_QCLmaterials_09_v3.pdf

  12. F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, IEEE J. Sel. Top. Quantum Electron. 6, 931 (2000).

    Article  Google Scholar 

  13. M. Razeghi, Proc. SPIE 7230, 723011 (2009).

    Article  Google Scholar 

  14. Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, and M. Razeghi, Nat. Photon. 4, 99 (2010).

    Article  ADS  Google Scholar 

  15. A. Yu. Egorov, P. N. Brunkov, E. V. Nikitina, E.V.Pirogov, M. S. Sobolev, A. A. Lazarenko, M. V. Baidakova, D. A. Kirilenko, and S. G. Konnikov, Semiconductors 48, 1600 (2014).

    Article  ADS  Google Scholar 

  16. R. Furstenberg, C. A. Kendziora, J. Stepnowski, S. V. Stepnowski, M. Rake, M. R. Papantonakis, V. Nguyen, G. K. Hubler, and R. A. McGill, Appl. Phys. Lett. 93, 224103 (2008).

    Article  ADS  Google Scholar 

  17. K. Hashimura, K. Ishii, and K. Awazu, Jpn. J. Appl. Phys. 54, 112701 (2015).

    Article  ADS  Google Scholar 

  18. K. Hashimura, K. Ishii, N. Akikusa, T. Edamura, H. Yoshida, and K. Awazu, Adv. Biomed. Eng. 1, 74 (2012).

    Article  Google Scholar 

  19. J. S. Yu, A. Evans, J. David, L. Doris, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 83, 5136 (2003).

    Article  ADS  Google Scholar 

  20. M. Razeghi, S. Slivken, J. Yu, A. Evans, and J. David, Microelectron. J. 34, 383 (2003).

    Article  Google Scholar 

  21. S. Slivken, A. Evans, J. David, and M. Razeghi, Appl. Phys. Lett. 81, 4321 (2002).

    Article  ADS  Google Scholar 

  22. J. S. Yu, A. Evans, J. David, L. Doris, S. Slivken, and M. Razeghi, IEEE Photon. Technol. Lett. 16, 747 (2004).

    Article  ADS  Google Scholar 

  23. J. S. Yu, S. Slivken, A. Evans, L. Doris, and M. Razeghi, Appl. Phys. Lett. 83, 2503 (2003).

    Article  ADS  Google Scholar 

  24. A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 84, 314 (2004).

    Article  ADS  Google Scholar 

  25. S. Slivken, J. S. Yu, A. Evans, J. David, L. Doris, and M. Razeghi, IEEE Photon. Technol. Lett. 16, 744 (2004).

    Article  ADS  Google Scholar 

  26. J. S. Yu, S. Slivken, A. Evans, J. David, and M. Razeghi, Appl. Phys. Lett. 82, 3397 (2003).

    Article  ADS  Google Scholar 

  27. R. E. Fern and A. Onton, J. Appl. Phys. 42, 3499 (1971).

    Article  ADS  Google Scholar 

  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1998), p. 479.

    Google Scholar 

  29. A. Friedrich, G. Scarpa, G. Boehm, and M. C. Amann, Electron. Lett. 40 (22), 1 (2004).

    Article  Google Scholar 

  30. L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Hofler, M. Loncar, M. Troccoli, and F. Capasso, Appl. Phys. Lett. 88, 201115 (2006).

    Article  ADS  Google Scholar 

  31. Y. V. Flores, A. Aleksandrova, M. Elagin, J. Kischkat, S. S. Kurlov, G. Monastyrskyi, J. Hellemann, S. L. Golovynskyi, O. I. Dacenko, S. V. Kondratenko, G. G. Tarasov, M. P. Semtsiv, and W. T. Masselink, J. Cryst. Growth 425, 360 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Egorov.

Additional information

Original Russian Text © A.V. Babichev, A. Bousseksou, N.A. Pikhtin, I.S. Tarasov, E.V. Nikitina, A.N. Sofronov, D.A. Firsov, L.E. Vorobjev, I.I. Novikov, L.Ya. Karachinsky, A.Yu. Egorov, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 10, pp. 1320–1324.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babichev, A.V., Bousseksou, A., Pikhtin, N.A. et al. Room-temperature operation of quantum cascade lasers at a wavelength of 5.8 μm. Semiconductors 50, 1299–1303 (2016). https://doi.org/10.1134/S1063782616100067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616100067

Navigation