Skip to main content
Log in

Sulfur passivation of semi-insulating GaAs: Transition from Coulomb blockade to weak localization regime

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I–V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I–V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The results obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum- mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov–Altshuler–Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Kastner, Phys. Today 46, 24 (1993).

    Article  ADS  Google Scholar 

  2. C. T. Liang, M. Y. Simmons, S. G. Smith, G. H. Kim, D. A. Ritchie, and M. Pepper, Phys. Rev. Lett. 81, 3507 (1998).

    Article  ADS  Google Scholar 

  3. S. Nagaraja, P. Matagne, V. Y. Thean, J. P. Leburton, Y. H. Kim, and R. M. Martin, Phys. Rev. B: Condens. Matter 56, 15752 (1997).

    Article  ADS  Google Scholar 

  4. S. Tarucha, D. G. Austing, and T. Honda, Phys. Rev. Lett. 77, 3613 (1996).

    Article  ADS  Google Scholar 

  5. C. W. J. Beenakker, Phys. Rev. B 44, 1646 (1991).

    Article  ADS  Google Scholar 

  6. H. Grabert and M. H. Devoret, Single Charge Tunneling, Coulomb Blockade Phenomena in Nanostructures, NATO Adv. Sci. Inst. Ser. B, Vol. 294 (Plenum, New York, 1992).

  7. S. Tarucha, T. Honda, and T. Saku, Solid State Commun. 94, 413 (1995).

    Article  ADS  Google Scholar 

  8. N. N. Ledentsov, in Proceedings of the 23rd International Conference on Physics of Semiconductors, July 22–27, 1996, Berlin, Germany, Ed. by M. Scheffler and R. Zimmermann (World Scientific, Singapore, 1996), Vol. 1, p. 19.

    Google Scholar 

  9. T. J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G. J. Davies, Phys. Rev. Lett. 56, 1198 (1986).

    Article  ADS  Google Scholar 

  10. D. V. Lang and R. A. Logan, Phys. Rev. Lett. 39, 635 (1977).

    Article  ADS  Google Scholar 

  11. S. L. Feng and J. C. Bourgoin, Solid State Fenom. 10, 265 (1989).

    Google Scholar 

  12. D. V. Averin, A. N. Korotkov, and K. K. Likharev, Phys. Rev. B 44, 6199 (1991).

    Article  ADS  Google Scholar 

  13. D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abush-Magder, U. Meirav, and M. A. Kastner, Nature 391, 156 (1998).

    Article  ADS  Google Scholar 

  14. N. T. Bagraev, L. E. Klyachkin, A. M. Malyarenko, and W. Gehlhoff, Superlatt. Microstruct. 23, 1333 (1998).

    Article  ADS  Google Scholar 

  15. N. T. Bagraev, A. D. Bouravlev, L. E. Klyachkin, A. M. Malyarenko, W. Gehlhoff, Yu. I. Romanov, and S. A. Rykov, Semiconductors 39, 685 (2005).

    Article  ADS  Google Scholar 

  16. D. K. Ferry, S. M. Goodnick, and J. Bird, Transport in Nanostructures (Cambridge Univ. Press, Cambridge, 2009).

    Book  Google Scholar 

  17. S. J. Shin, J. J. Lee, H. J. Kang, J. B. Choi, S.-R. E. Yang, Y. Takahashi, and D. G. Hasko, Nano Lett. 11, 1591 (2011).

    Article  ADS  Google Scholar 

  18. U. Meriav and E. B. Foxman, Semicond. Sci. Technol. 10, 255 (1995).

    Article  Google Scholar 

  19. N. T. Bagraev, N. M. Kolchanova, and V. A. Mashkov, JETP Lett. 45, 288 (1987).

    ADS  Google Scholar 

  20. N. T. Bagraev, J. Phys. (France) I 1, 1511 (1991).

    Article  ADS  Google Scholar 

  21. N. T. Bagraev, Mater. Sci. Forum 143-147, 543 (1994).

    Article  Google Scholar 

  22. M. Martin and S. Makram-Ebeid, Physica B 116, 371 (1983).

    Article  Google Scholar 

  23. T. Figielski, Appl. Phys. A 35, 255 (1984).

    Article  ADS  Google Scholar 

  24. T. Figielski, T. Wosinski, and A. Makosa, Acta Phys. Polon. A 92, 745 (1997).

    Article  Google Scholar 

  25. L. Esaki, Phys. Rev. 109, 603 (1958).

    Article  ADS  Google Scholar 

  26. R. N. Thomas, H. M. Hobgood, G. W. Eldridge, D. L. Barrett, and T. T. Braggins, Solid State Electron. 24, 387 (1981).

    Article  ADS  Google Scholar 

  27. S. Makram-Ebeid, Semi-Insulating III–V Materials (Shiva Pub, Evian, 1982), p. 397.

    Google Scholar 

  28. A. Kangarlu, H. Guarriello, F. L. Berney, and P. W. Yu, Appl. Phys. Lett. 59, 2290 (1991); K. R. Elliot, Appl. Phys. Lett. 42, 274 (1983).

    Article  ADS  Google Scholar 

  29. P. Schultz and A. von Lilienfeld, Mater. Sci. Eng. 17, 084007 (2009).

    Google Scholar 

  30. W. G. Schmidt, F. Bechstedt, and J. Bernholc, Appl. Surf. Sci. 190, 264 (2002).

    Article  ADS  Google Scholar 

  31. V. P. La Bella, M. R. Krause, Z. Ding, and P. M. Thibado, Surf. Sci. Rep. 60, 1 (2005).

    Article  ADS  Google Scholar 

  32. B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).

    Article  ADS  Google Scholar 

  33. S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  34. K. K. Choi, D. C. Tsui, and K. Alavi, Phys. Rev. B 36, 7751(R) (1987).

    Google Scholar 

  35. B. L. Al’tshuler and A. G. Aronov, JETP Lett. 33, 499 (1981).

    ADS  Google Scholar 

  36. S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys. 63, 707 (1980).

    Article  ADS  Google Scholar 

  37. S. A. Studenikin, P. T. Coleridge, N. Ahmed, P. J. Poole, and A. Sachrajda, Phys. Rev. B 68, 035317 (2003).

    Article  ADS  Google Scholar 

  38. J. A. Simmons, D. C. Tsui, and G. Weimann, Surf. Sci. 196, 81 (1988).

    Article  ADS  Google Scholar 

  39. V. N. Bessolov and M. V. Lebedev, Semiconductors 32, 1141 (1998).

    Article  ADS  Google Scholar 

  40. E. Yu. Beliayev, B. I. Belevtsev, and Yu. A. Kolesnichenko, Low Temp. Phys. 37, 318 (2011).

    Article  ADS  Google Scholar 

  41. H. G. Johnson, S. P. Bennett, R. Barua, L. H. Lewis, and D. Heiman, Phys. Rev. B 82, 085202 (2010).

    Article  ADS  Google Scholar 

  42. M. M. Parish and P. B. Littlewood, Phys. Rev. B 72, 094417 (2005).

    Article  ADS  Google Scholar 

  43. E. R. Viana, G. M. Ribeiro, A. G. Oliveira, M. L. Peres, R. M. Rubinger, and C. P. L. Rubinger, Mater. Res. 15, 530 (2012).

    Article  Google Scholar 

  44. B. Jabakhanji, A. Michon, C. Consejo, W. Desrat, M. Portail, A. Tiberj, M. Paillet, A. Zahab, F. Cheynis, F. Lafont, F. Schopfer, W. Poirier, F. Bertran, P. le Fèvre, A. Taleb-Ibrahimi, D. Kazazis, W. Escoffier, B. C. Camargo, Y. Kopelevich, J. Camassel, and B. Jouault, Phys. Rev. B 89, 085422 (2014).

    Article  ADS  Google Scholar 

  45. D. W. Jung, J. P. Noh, A. Z. M. T. Islam, and N. Otsuka, J. Phys. Soc. Jpn. 77, 074721 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. T. Bagraev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagraev, N.T., Chaikina, E.I., Danilovskii, E.Y. et al. Sulfur passivation of semi-insulating GaAs: Transition from Coulomb blockade to weak localization regime. Semiconductors 50, 466–477 (2016). https://doi.org/10.1134/S1063782616040060

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616040060

Keywords

Navigation