Skip to main content
Log in

Model Development for Current–Voltage and Transconductance Characteristics of Normally-off AlN/GaN MOSHEMT

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

In this paper, an AlN/GaN-based MOSHEMT is proposed, in accordance to this, a charge control model has been developed analytically and simulated with MATLAB to predict the characteristics of threshold voltage, drain currents and transconductance. The physics based models for 2DEG density, threshold voltage and quantum capacitance in the channel has been put forward. By using these developed models, the drain current for both linear and saturation models is derived. The predicted threshold voltage with the variation of barrier thickness has been plotted. A positive threshold voltage can be obtained by decreasing the barrier thickness which builds up the foundation for enhancement mode MOSHEMT devices. The predicted I d V gs , I dV ds and transconductance characteristics show an excellent agreement with the experimental results and hence validate the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Dabiran, A. M. Wowchak, A. Osinsky, J. Xie, B. Hertog, B. Cui, D. C. Look, and P. P. Chow, Appl. Phys. Lett. 93, 82111 (2008).

    Article  Google Scholar 

  2. T. R. Lenka and A. K. Panda, Semiconductors 45, 1211 (2011).

    Article  ADS  Google Scholar 

  3. T. R. Lenka and A. K. Panda, Semiconductors 45, 660 (2011).

    ADS  Google Scholar 

  4. M. Miyoshi, M. Sakai, S. Arulkumaran, H. Ishikawa, T. Egawa, M. Tanaka, and O. Oda, Jpn. J. Appl. Phys. 43, 7939 (2004).

    Article  ADS  Google Scholar 

  5. S. Hubbard, D. Pavlidis, V. Valiaev, and A. Eisenbach, J. Electron. Mater. 31, 395 (2002).

    Article  ADS  Google Scholar 

  6. P. Ye, B. Yang, K. Ng, J. Bude, G. Wilk, S. Halder, and J. Hwang, Int. J. High Speed Electron. Syst. 14, 791 (2004).

    Article  Google Scholar 

  7. T. Huang, X. Zhu, and K. M. Lau, IEEE Electron Dev. Lett. 33, 1123 (2012).

    Article  ADS  Google Scholar 

  8. T. Huang, X. Zhu, and K. M. Lau, IEEE Trans. Electron Dev. 60, 3019 (2013).

    Article  ADS  Google Scholar 

  9. S. Khandelwal and T. A. Fjeldly, Solid State Electron 76, 60 (2012).

    Article  ADS  Google Scholar 

  10. F. M. Yigletu and S. Khandelwal, IEEE Trans. Electron Dev. 60, 3746 (2013).

    Article  ADS  Google Scholar 

  11. D. Pandey and T. R. Lenka, Semiconductors 49, 524 (2015).

    Article  Google Scholar 

  12. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, J. Appl. Phys. 85, 3222 (1999).

    Article  ADS  Google Scholar 

  13. S. Ganguly, J. Verma, G. Li, T. Zimmermann, H. Xing, and D. Jena, Appl. Phys. Lett. 99, 193504 (2011).

    Article  ADS  Google Scholar 

  14. M. Tapajna and J. Kuzmík, Appl. Phys. Lett. 100, 1135091 (2012).

    Article  Google Scholar 

  15. S. Kola, J. M. Golio, and G. N. Maracas, IEEE Electron Dev. Lett. 9 (3), 136 (1988).

    Article  ADS  Google Scholar 

  16. M. Li and Y. Wang, IEEE Trans. Electron Dev. 55, 261 (2008).

    Article  ADS  Google Scholar 

  17. X. Cheng, M. Li, and Y. Wang, IEEE Trans. Electron Dev. 56, 2881 (2009).

    Article  ADS  Google Scholar 

  18. Y. Q. Tao, D. J. Chen, Y. C. Kong, B. Shen, Z. L. Xie, P. Han, R. Zhang, and Y. D. Zheng, J. Electron. Mater. 35, 722 (2006).

    Article  ADS  Google Scholar 

  19. D. A. Deen and J. G. Champlain, Appl. Phys. Lett. 99, 53501 (2011).

    Article  ADS  Google Scholar 

  20. S. M. Sze, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Swain.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swain, R., Jena, K. & Lenka, T.R. Model Development for Current–Voltage and Transconductance Characteristics of Normally-off AlN/GaN MOSHEMT. Semiconductors 50, 384–389 (2016). https://doi.org/10.1134/S1063782616030210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616030210

Keywords

Navigation