Skip to main content
Log in

Emission intensity of the λ = 1.54 μm line in ZnO films grown by magnetron sputtering, diffusion doped with Ce, Yb, Er

  • Spectroscopy, Interaction with Radiation
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of the Er3+-ion excitation type on the photoluminescence spectra of crystalline ZnO(ZnO〈Ce, Yb, Er〉) films is determined in the cases of resonant (λ = 532 nm, Er3+-ion transition from 4S3/2, 2H11/2 levels to 4I15/2) and non-resonant (λ = 325 nm, in the region near the ZnO band-edge emission) excitation. It is shown that resonant excitation gives rise to lines with various emission intensities, characteristic of the Er3+-ion intracenter 4f transition with λ = 1535 nm when doping crystalline ZnO films with three rare-earth ions (REIs, Ce, Yb, Er) or with two impurities (Ce, Er) or (Er, Yb), independently of the measurement temperature (T = 83 and 300 K). The doping of crystalline ZnO films with rare-earth impurities (Ce, Yb, Er) leads to the efficient transfer of energy to REIs, a consequence of which is the intense emission of an Er3+ ion in the IR spectral region at λmax = 1535 nm. The kick-out diffusion mechanism is used upon the sequential introduction of impurities into semiconductor matrices and during the postgrowth annealing of the ZnO films under study. The crystalline ZnO films doped with Ce, Yb, Er also exhibit intense emission in the visible spectral region at room temperature, which makes them promising materials for optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zinc Oxide Bulk. Thin Films and Nanostructures Processing, Properties and Applications, Ed. by C. Jagadish and S. Pearton (Elsevier, Amsterdam, 2006).

    Google Scholar 

  2. D. C. Look, J. Electron. Mater. 35, 1299 (2006).

    Article  ADS  Google Scholar 

  3. Z. L. Wang, Appl. Phys. A: Mater. Sci. Proc. (2007). doi: 10.1007/s00339-007-3942-8

    Google Scholar 

  4. P. M. Parthangal, R. E. Cavicchi, and M. R. Zachariah, Nanotechnology 17, 3786 (2006).

    Article  ADS  Google Scholar 

  5. H. J. Lozukowski and W. M. Jadwisienczak, Phys. Status Solidi B 1, 18 (2007).

    Google Scholar 

  6. A. Thurber, G. L. Beausolbel, G. A. Alanko, J. J. Andhel, M. S. Jones, L. M. Jonson, C. B. Hanna, D. A. Tenne, and A. Punnose, J. Appl. Phys. 109, 07C305 (2011).

    Article  Google Scholar 

  7. A. A. Kaminskii and B. M. Antipenko, Multilevel Functional Schemes of the Crystal Lasers (Nauka, Moscow, 1989), p. 199 [in Russian].

    Google Scholar 

  8. D. L. Dexter, J. Chem. Phys. 21, 836 (1953).

    Article  ADS  Google Scholar 

  9. Handbook of Laser Science and Technology, Ed. by M. J. Weber (CRC Press, Boca Raton, 1982), Vol. 1.

    Google Scholar 

  10. R. Sh. Malkovich, Mathematics of Diffusion in Semiconductors (Nauka, Leningrad, 1999), p. 175 [in Russian].

    MATH  Google Scholar 

  11. M. M. Mezdrogina, M. V. Eremenko, S. M. Golubenko, and S. N. Razumov, Phys. Solid State 54, 1235 (2012).

    Article  ADS  Google Scholar 

  12. G. Brauer, W. Anwand, et al., Phys. Rev. B 79, 115212 (2009); U. Ozgur et al., J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  13. S. Iwan, S. Bambang, J. L. Zhao, S. T. Tan, H. M. Fan, L. Sun, S. Zhang, H. H. Ryu, and S. W. Sun, Physica B 407, 2721 (2012).

    Article  ADS  Google Scholar 

  14. H. Zhou, T. Komori, M. Yoshino, and M. Morinaga, Appl. Phys. Lett. 86, 041107 (2005).

    Article  ADS  Google Scholar 

  15. X. M. Duan, C. Stampfl, M. M. M. Bilek, and D. R. McKenzzie, Phys. Rev. B 79, 235208 (2009).

    Article  ADS  Google Scholar 

  16. J. P. Suchet, Physical Chemistry of Semiconductors (Dunod, Paris, 1962; Metallurgiya, Moscow, 1969).

    Google Scholar 

  17. X. Liu, Y. Teng, Y. Zhuang, J. Xie, Y. Qiao, G. Dong, D. Chen, and J. Qiu, Opt. Lett. 34, 3505 (2009).

    Article  Google Scholar 

  18. J. X. Meng, K. W. Chea, Zh. Pu. Shi, and J. Q. Li, Appl. Phys. Lett. 91, 151107 (2007).

    Article  ADS  Google Scholar 

  19. M. Ishi, Sh. Komuro, T. Morikawa, and Y. Aoyagi, J. Appl. Phys. 89, 3679 (2001).

    Article  ADS  Google Scholar 

  20. M. M. Mezdrogina, G. N. Mosina, E. I. Terukov, and I. N. Trapeznikova, Semiconductors 35, 684 (2001).

    Article  ADS  Google Scholar 

  21. Peterson, Ch. H. Brimont, M. Gallot, G. Shrenber, C. Uplag-Bullet, C. Collins, and A. Dinia, J. Appl. Phys. 107, 123522 (2010).

    Article  ADS  Google Scholar 

  22. M. M. Mezdrogina, M. V. Eremenko, E. I. Terukov, and Yu. V. Kozhanova, Semiconductors 46, 901 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Mezdrogina.

Additional information

Original Russian Text © M.M. Mezdrogina, M.V. Eremenko, A.N. Smirnov, V.N. Petrov, E.I. Terukov, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 8, pp. 1016–1023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezdrogina, M.M., Eremenko, M.V., Smirnov, A.N. et al. Emission intensity of the λ = 1.54 μm line in ZnO films grown by magnetron sputtering, diffusion doped with Ce, Yb, Er. Semiconductors 49, 992–999 (2015). https://doi.org/10.1134/S1063782615080138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615080138

Keywords

Navigation