Skip to main content
Log in

Edge effects in second-harmonic generation in nanoscale layers of transition-metal dichalcogenides

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studying the optical properties of nanoscale single crystals of MoS2:Cl2 and WS2:Br2 semiconductor compounds are presented. In microscopic images obtained at the wavelength of the second (400 nm), edge effects are detected, which consist in enhancement or reduction in the second-harmonic signal intensity. Unlike previously proposed interference mechanisms of edge effects, non-interference mechanisms are considered. The occurrence of edge effects is associated with either an increased Cl2 and Br2 halogen molecule concentration or with an electrically induced second harmonic caused by band bending at the edges of individual crystal layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Lee, S.-W. Min, Y.-G. Chang, M. K. Park, et al., Nano Lett. 12, 3695 (2012).

    Article  ADS  Google Scholar 

  2. K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, Phys. Rev. Lett. 105, 136805 (2010).

    Article  ADS  Google Scholar 

  3. G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Nano Lett. 11, 5111 (2011).

    Article  ADS  Google Scholar 

  4. H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, Nano Lett. 12, 4674 (2012).

    Article  ADS  Google Scholar 

  5. L. Kulyuk, D. Dumchenko, E. Bucher, K. Friemelt, O. Shenker, L. Charron, E. Fortin, and T. Dumouchel, Phys. Rev. B 72, 75336 (2005).

    Article  ADS  Google Scholar 

  6. L. Kulyuk, L. Charon, and E. Fortin, Phys. Rev. B 68, 075314 (2003).

    Article  ADS  Google Scholar 

  7. J. Chamings, S. Ahmed, S. J. Sweeney, V. A. Odnoblyudov, and C. W. Tu, Appl. Phys. Lett. 92, 021101 (2008).

    Article  ADS  Google Scholar 

  8. H.-P. Komsa, J. Kotakoski, S. Kurasch, O. i Lehtinen, U. Kaiser, and A. V. Krasheninnikov, Phys. Rev. Lett. 109, 035503 (2012).

    Article  ADS  Google Scholar 

  9. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J. S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J. C. Grossman, and J. Wu, Sci. Rep. 3, 2657 (2013).

    Article  ADS  Google Scholar 

  10. S. Anghel, Yu. Chumakov, V. Kravtsov, A. Mitioglu, P. Plochocka, K. Sushkevich, G. Volodina, A. Colev, and L. Kulyuk, arXiv:1411.3850v1[cond-mat. mtrl-sci].

  11. N. Huo, S. Yang, Z. Wei, S.-S. Li, J.-B. Xia, and J. Li, Sci. Rep. 4, 5209 (2014).

    ADS  Google Scholar 

  12. R. Suzuki, M. Sakano, Y. J. Zhang, R. Akashi, D. Morikawa, A. Harasawa, K. Yaji, K. Kuroda, K. Miyamoto, T. Okuda, K. Ishizaka, R. Arita, and Y. Iwasa, Nature Nanotechnol. 9, 611 (2014).

    Article  ADS  Google Scholar 

  13. S. Wu et al., Nature Phys. 9, 149 (2013).

    Article  ADS  Google Scholar 

  14. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Yu. M. You, G.-H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, Nature Mater. 12, 554 (2013).

    Article  ADS  Google Scholar 

  15. H. R. Gutiérrez, N. Perea-López, A. L. Elás, A. Berkdemir, B. Wang, R. Lv, F. López-Urias, V. H. Crespi, H. Terrones, and M. Terrones, Nano Lett. 13, 3447 (2013).

    Article  ADS  Google Scholar 

  16. X. Yin et al., Science 344, 488 (2014).

    Article  ADS  Google Scholar 

  17. Y. Li, S. Tongay, Q. Yue, J. Kang, J. Wu, and J. Li, J. Appl. Phys. 114, 174307 (2013).

    Article  ADS  Google Scholar 

  18. W.-T. Hsu, Zi-Ang Zhao, L.-J. Li, C.-H. Chen, M.-H. Chiu, Pi-S. Chang, Yi-C. Chou, and W.-H. Chang, ASC Nano 8, 2951 (2014).

    Article  Google Scholar 

  19. K. Novoselov, Science 306, 666 (2004).

    Article  ADS  Google Scholar 

  20. D. M. D’Ambra, J. V. Marzik, R. Kershaw, J. Baglio, K. Dwight, and A. Wold, J. Solid State Chem. 57, 351 (1985).

    Article  ADS  Google Scholar 

  21. A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, Cryst. Growth Des. 13, 4453 (2013).

    Article  Google Scholar 

  22. E. Mishina, N. Sherstyuk, S. Lavrov, A. Sigov, A. Mitioglu, S. Anghel, and L. Kulyuk, Appl. Phys. Lett. (in press).

  23. A. Colev, C. Gherman, V. Mirovitskii, L. Kulyuk, and E. Fortin, J. Luminesc. 129, 1945 (2009).

    Article  ADS  Google Scholar 

  24. O. A. Aktsipetrov, A. A. Fedyanin, E. D. Mishina, A. N. Rubtsov, C. W. VanHasselt, M. A. C. Devillers, and Th. Rasing, Surf. Sci. 1033, 352 (1996).

    Google Scholar 

  25. M. Lei, J. Price, and M. C. Downer, Appl. Phys. Lett. 96, 241105 (2010).

    Article  ADS  Google Scholar 

  26. T. A. Germer, K. W. Kolasiński, J. C. Stephenson, and L. J. Richter, Phys. Rev. B 55, 10694 (1997).

    Article  ADS  Google Scholar 

  27. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981; Mir, Moscow, 1984).

    Google Scholar 

  28. A. Ayari, E. Cobas, O. Ogundadegbe, and M. S. Fuhrer, J. Appl. Phys. 101, 014507 (2007).

    Article  ADS  Google Scholar 

  29. M. M. Ugeda, A. J. Bradley, Su-Fei Shi, F. H. da Jornada, Y. Zhang, D. Y. Qiu, W. Ruan, S.-K. Mo, Z. Hussain, Z.-X. Shen, F. Wang, S. G. Louie, and M. F. Crommie, Nature Mater. (2014). doi: 10.1038/NMAT4061

    Google Scholar 

  30. C. A. Koval and J. B. Olson, J. Electroanal. Chem. 234, 133 (1987).

    Article  Google Scholar 

  31. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Nature Nanotechnol. 7, 699 (2012).

    Article  ADS  Google Scholar 

  32. R. H. Friend and A. D. Yoffe, Adv. Phys. 36, 1 (1987).

    Article  ADS  Google Scholar 

  33. Y. C. Lee, J. L. Shen, K. W. Chen, W. Z. Lee, S. Y. Hu, K. K. Tiong, and Y. S. Huang, J. Appl. Phys. 99, 63706 (2006).

    Article  ADS  Google Scholar 

  34. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. Castro Neto, and K. S. Novoselov, Science 340, 1311 (2013).

    Article  ADS  Google Scholar 

  35. H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H. G. Xing, and L. Huang, ACS Nano 7, 1072 (2013).

    Article  Google Scholar 

  36. D. Wickramaratne and F. Zahid, J. Chem. Phys. 140, 124710 (2014).

    Article  ADS  Google Scholar 

  37. C. Zhang, A. Johnson, C.-L. Hsu, L.-J. Li, and C.-K. Shih, Nano Lett. 14, 2443 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Lavrov.

Additional information

Original Russian Text © E.D. Mishina, N.E. Sherstyuk, A.P. Shestakova, S.D. Lavrov, S.V. Semin, A.S. Sigov, A. Mitioglu, S. Anghel, L. Kulyuk, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 6, pp. 810–816.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishina, E.D., Sherstyuk, N.E., Shestakova, A.P. et al. Edge effects in second-harmonic generation in nanoscale layers of transition-metal dichalcogenides. Semiconductors 49, 791–796 (2015). https://doi.org/10.1134/S1063782615060159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615060159

Keywords

Navigation