Skip to main content
Log in

Influence of the conditions of pulsed laser deposition on the structural, electrical, and optical properties of VO2 thin films

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The technique of pulse laser deposition with the separation of plume drops is used to produce VO2 thin films on sapphire(0001) and silicon(111) substrates. It is established that the energy density at the target and the oxygen pressure influence the structural and electrical properties of the films. All of the VO2 crystal films exhibit semiconductor-metal transitions with a substantial change in the resistance (by 2–5 orders of magnitude). The transmittance in the range 200–800 nm and reflectance in the range 400–700 nm are studied in the temperature range from 20 to 100°C. The transmittance of the films at wavelengths from 300 to 800 nm shows a jump and hysteresis upon heating and cooling. It is for the first time established that the changes in the transmittance of the film are different in character at different wavelengths and the shape of the temperature hysteresis loop for optical transmittance in the visible and near-ultraviolet regions does not in all areas replicate the shape of the hysteresis loop for the resistivity of the VO2 films. The difference in the behavior of the hysteresis curves for the transmittance and resistance is attributed to variations in the absorption of the films under variations in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. H. Kim and H. S. Kwok, Appl. Phys. Lett. 65, 3188 (1994).

    Article  ADS  Google Scholar 

  2. T. Kikuzuki, R. Takahashi, and M. Lippmaa, Phys. Rev. B 82, 144113 (2010).

    Article  ADS  Google Scholar 

  3. Minah Seo, Jisoo Kyoung, Hyeongryeol Park, Sukmo Koo, Hyun-sun Kim, Hannes Bernien, Bong Jun Kim, Jong Ho Choe, Yeong Hwan Ahn, Hyun-Tak Kim, Namkyoo Park, Q-Han Park, Kwangjun Ahn, and Daisik Kim, Nano Lett. 10, 2064 (2010).

    Article  ADS  Google Scholar 

  4. M. Rini, Z. Hao, R. W. Schoenlein, C. Giannetti, F. Parmigiani, S. Fourmaux, J. C. Kieffer, A. Fujimori, M. Onoda, S. Wall, and A. Cavalleri, Appl. Phys. Lett. 92, 181904 (2008).

    Article  ADS  Google Scholar 

  5. P. Kiri, G. Hyett, and R. Binions, Adv. Mat. Lett. 1, 86 (2010).

    Article  Google Scholar 

  6. H. K. Kim, H. You, R. P. Chiarello, H. L. M. Chang, T. J. Zhang, and D. J. Lam, Phys. Rev. B 47, 900 (1993).

    Google Scholar 

  7. F. C. Case, J. Vac. Sci. Technol. A 5, 1762 (1987).

    Article  ADS  Google Scholar 

  8. D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer, and M. A. El. Khakani, Appl. Phys. Lett. 87, 051910 (2005).

    Article  ADS  Google Scholar 

  9. Y. Ningyi, L. Jinhua, H. L. W. Chan, and L. Chenglu, Appl. Phys. A: Mater. Sci. Process. 78, 777 (2004).

    Article  ADS  Google Scholar 

  10. Bong-Jun Kim, Yong Wook Lee, Sungyoul Choi, Byung-Gyu Chae, and Hyun-Tak Kim, J. Korean Phys. Soc. 50, 653 (2007).

    Article  Google Scholar 

  11. T. Driscoll, S. Palit, M. M. Qazilbash, M. Brehm, F. Keilmann, Byung-Gyu Chae, Sun-Jin Yun, Hyun-Tak Kim, S. Y. Cho, N. Marie Jokerst, D. R. Smith, and D. N. Basov, Appl. Phys. Lett. 93, 024101 (2008).

    Article  ADS  Google Scholar 

  12. A. V. Ilinskiy, O. E. Kvashenkina, and E. B. Shadrin, Semiconductors 46, 422 (2012).

    Article  ADS  Google Scholar 

  13. A. V. Ilinskiy, O. E. Kvashenkina, and E. B. Shadrin, Semiconductors 46, 1171 (2012).

    Article  ADS  Google Scholar 

  14. T.-W. Chiu, Kazuhiko Tonooka, and Naoto Kikuchi, Thin Solid Films 518, 7441 (2010).

    Article  ADS  Google Scholar 

  15. B. G. Chae, D. H. Youn, H. T. Kim, S. L. Maeng, and K. Y. Kang, J. Korean Phys. Soc. 44, 884 (2004).

    Google Scholar 

  16. O. A. Novodvorsky, A. A. Lotin, and E. V. Khaidukov, RF Patent on Useful Model No. 89906, Byull. No. 35 (2009).

    Google Scholar 

  17. M. Gurvitch, S. Luryi, A. Polyakov, and A. Shabalov, J. Appl. Phys. 106, 1 (2009).

    Article  Google Scholar 

  18. K. D. Rogers, J. A. Coath, and M. C. Lovell, J. Appl. Phys. 70, 1412 (1991).

    Article  ADS  Google Scholar 

  19. M. Borek, F. Qian, V. Nagabushnam, and R. K. Singh, Appl. Phys. Lett. 63, 3288 (1993).

    Article  ADS  Google Scholar 

  20. E. U. Donev, J. Y. Suh, R. Lopez, L. C. Feldman, and R. F. Haglund, Jr., Adv. Optoelectron. 739, 53 (2008).

    Google Scholar 

  21. Gang Xu, C.-M. Huang, Masato Tazawa, Ping Jin, D.-M. Chen, and L. Miao, Appl. Phys. Lett. 93, 061911 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Novodvorsky.

Additional information

Original Russian Text © O.A. Novodvorsky, L.S. Parshina, O.D. Khramova, V.A. Mikhalevsky, K.D. Shcherbachev, V.Ya. Panchenko, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 5, pp. 577–583.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novodvorsky, O.A., Parshina, L.S., Khramova, O.D. et al. Influence of the conditions of pulsed laser deposition on the structural, electrical, and optical properties of VO2 thin films. Semiconductors 49, 563–569 (2015). https://doi.org/10.1134/S1063782615050188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615050188

Keywords

Navigation