Skip to main content
Log in

Carriers confinement study of GaNAsBi/GaAs QWs emitting at 1.3 and 1.55 μm

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Band structures of GaN0.58y As1–1.58y Bi y /GaAs quantum wells (QWs) were studied using the band anticrossing model and the envelope function approximation. The confined states energies and the oscillator strengths of interband transitions were determined for well widths L W and Bi composition y varying in the range of 4–10 nm and 0–0.07 respectively. The emissions 1.3 and 1.55 μm were reached for specific couples (L W , y). The band anticrossing effect on the in-plane carriers effective mass has been investigated at k = 0. The absorbance spectra were calculated for QWs operating at 1.3 and 1.55 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna, Phys. Rev. B 75, 045203 (2007).

    Article  ADS  Google Scholar 

  2. W. Shan, K. M. Yu, W. Walukiewicz, J. Wu, J. W. Ager III, and E. E. Haller, J. Phys.: Condens. Matter 16, S3355 (2004).

    ADS  Google Scholar 

  3. Y. N. Qiu and J. M. Rorison, Appl. Phys. Lett. 87, 081111 (2005).

    Article  ADS  Google Scholar 

  4. J.-Y. Duboz, Phys. Rev. B 75, 045327 (2007).

    Article  ADS  Google Scholar 

  5. S. Nacer, A. Aissat, and K. Ferdjani, Opt. Quantum Electron. 40, 677 (2008).

    Article  Google Scholar 

  6. P. Wei, S. Tixier, M. Chicoine, S. Francoeur, A. Mascarenhas, T. Tiedje, and F. Schiettekatte, Nucl. Instrum. Methods Phys. Res. B 219, 671 (2004).

    Article  ADS  Google Scholar 

  7. A. Janotti, S.-H. Wei, and S. B. Zhang, Phys. Rev. B 65, 115203 (2002).

    Article  ADS  Google Scholar 

  8. E. C. Young, PhD Thesis (University of British Columbia, 2006).

  9. W. Huang, K. Oe, G. Feng, and M. Yoshimoto, J. Appl. Phys. 98, 053505 (2005).

    Article  ADS  Google Scholar 

  10. C. Skierbiszewski, S. P. Lepkowski, P. Perlin, T. Suski, W. Jantsch, and J. Geisz, Physica E 13, 1078 (2002).

    Article  ADS  Google Scholar 

  11. J. Wu, W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. P. Xin, and C. W. Tu, Phys. Rev. B 64, 085320 (2001).

    Article  ADS  Google Scholar 

  12. H. Dumant, L. Auvray, Y. Monteil, F. Saidi, F. Hassen, and H. Maaref, Opt. Mater. 24, 303 (2003).

    Article  ADS  Google Scholar 

  13. S. Imhof, C. Buckers, A. Thranhardt, J. Hader, J. V. Moloney, and S. W. Koch, Semicond. Sci. Technol. 23, 125009 (2008).

    Article  ADS  Google Scholar 

  14. Y. I. Mazur, V. G. Dorogan, M. Schmidbauer, G. G. Tarasov, S. R. Johnson, X. Lu, S.-Q. Yu, Z. M. Wang, T. Tiedje, and G. J. Salamo, Nanotechnology 22, 375703 (2011).

    Article  Google Scholar 

  15. J. Hwang and J. D. Phillips, Phys. Rev. B 83, 195327 (2011).

    Article  ADS  Google Scholar 

  16. J. C. Harmand, G. Ungaro, J. Ramos, E. V. K. Rao, G. Saint-Girons, R. Teissier, G. le Roux, L. Largeau, and G. Patriarche, J. Cryst. Growth 227, 553 (2001).

    Article  ADS  Google Scholar 

  17. M. M. Habchi, A. Ben Nasr, A. Rebey, and B. El Jani, Infrared Phys. Technol. 61, 88 (2013).

    Article  ADS  Google Scholar 

  18. A. T. Meney, B. Gonul, and E. P. O’Reilly, Phys. Rev. B 50, 10893 (1994).

    Article  ADS  Google Scholar 

  19. J. Wu, W. Shan, and W. Walukiewicz, Semicond. Sci. Technol. 17, 860 (2002).

    Article  ADS  Google Scholar 

  20. G. Bastard, Wave Mechanics Applied to Semiconductor Heterostructures (Les Editions de Physique, Les Ulis Cedex, France, 1990).

    Google Scholar 

  21. D. Ahn, S. L. Chuang, and Y.-C. Chang, J. Appl. Phys. 64, 4056 (1988).

    Article  ADS  Google Scholar 

  22. R. Kudrawiec, K. Ryczko, J. Misiewicz, H. B. Yuen, S. R. Bank, M. A. Wistey, H. P. Bae, and J. S. Harris, Appl. Phys. Lett. 86, 141908 (2005).

    Article  ADS  Google Scholar 

  23. H. B. Yuen, S. R. Bank, H. Bae, A. M. Wistey, and J. S. Harris, J. Appl. Phys. 99, 093504 (2006).

    Article  ADS  Google Scholar 

  24. S. C. P. Rodrigues, G. M. Sipahi, and E. F. da Silva, Jr., Microelectron. J. 36, 434 (2005).

    Article  Google Scholar 

  25. B. Fluegel, S. Francoeur, and A. Mascarenhas, Phys. Rev. Lett. 97, 067205 (2006).

    Article  ADS  Google Scholar 

  26. S. Tomi, E. P. O’Reilly, R. Fehse, S. J. Sweeney, A. R. Adams, A. D. Andreev, S. A. Choulis, T. J. C. Hosea, and H. Riechert, J. Sel. Top. Quantum Electron. 9, 1228 (2003).

    Article  Google Scholar 

  27. A. Lucio Claudio, P. Alfredo, and B. Franco, Phys. Rev. B 36, 5887 (1987).

    Article  Google Scholar 

  28. S. Tomi, E. P. O’Reilly, P. J. Klar, H. Grüning, W. Heimbrodt, W. M. Chen, and I. A. Buyanova, Phys. Rev. B 69, 245305 (2004).

    Article  ADS  Google Scholar 

  29. S. Tomi and E. P. O’Reilly, Phys. Rev. B 71, 233301 (2005).

    Article  ADS  Google Scholar 

  30. H. Fang, H. A. Bechtel, E. Plis, M. C. Martin, S. Krishna, E. Yablonovitch, and A. Javey, P. Natl. Acad. Sci. U.S.A. 110, 11688 (2013).

    Article  ADS  Google Scholar 

  31. S. Kasap, and P. Capper (Eds.), Springer Handbook of Electronic and Photonic Materials (Springer, 2006), page 1026–1029, e-ISBN: 0-387-29185-7.

    Google Scholar 

  32. P. K. Basu, Theory of Optical Process in Semiconductors Bulk and Microstructures (Clarendon, Oxford, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rebey.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Nasr, A., Habchi, M.M., Bilel, C. et al. Carriers confinement study of GaNAsBi/GaAs QWs emitting at 1.3 and 1.55 μm. Semiconductors 49, 593–599 (2015). https://doi.org/10.1134/S1063782615050048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615050048

Keywords

Navigation