Skip to main content
Log in

Analysis of thermal emission processes of electrons from arrays of InAs quantum dots in the space charge region of GaAs matrix

  • Electronic Properties of Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We thoroughly analyze admittance spectroscopy data on the temperature dependence of the rate of electron emission from the ground state of InAs quantum dots in the space-charge layer of a Schottky barrier on an n-GaAs matrix. The experimental results are described using a one-dimensional model of thermally activated tunneling with the involvement of virtual states. The shape of the potential barrier to be overcome by emitted electrons is selected by introducing the effective concentration of shallow donors such that the electron binding energies in the quantum dots were similar to those determined from the measured capacitance-voltage characteristics of the investigated structures. The obtained electron-capture cross sections increase with the ground-state binding energy (quantum dot size). The capture cross-section values for InAs quantum dots with average lateral sizes of 9 and 20 nm lie in the ranges 1 × 10−14−2 × 10−13 and 4 × 10−12−2 × 10−11 cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum Dot Heterostructures (Wiley, Chichester, 1998).

    Google Scholar 

  2. D. Bimberg, Semiconductor Nanostructures (Springer, 2008).

    Book  Google Scholar 

  3. Zhiming and M. Wang, Self-Assembled Quantum Dots (Springer, 2008).

    Google Scholar 

  4. Zhiming and M. Wang, Quantum Dot Devices (Springer, 2012).

    Google Scholar 

  5. M. Geller, E. Stock, C. Kapteyn, R. L. Selin, and D. Bimberg, Phys. Rev. B 73, 205331 (2006).

    Article  ADS  Google Scholar 

  6. S. Schulz, S. Schnull, C. Heyn, and W. Hansen, Phys. Rev. B 69, 195317 (2004).

    Article  ADS  Google Scholar 

  7. P. W. Fry, J. J. Finley, L. R. Wilson, A. Lemaitre, D. J. Mowbray, M. S. Skolnick, M. Hopkinson, G. Hill, and J. C. Clark, Appl. Phys. Lett. 77, 4344 (2000).

    Article  ADS  Google Scholar 

  8. P. N. Brunkov, A. R. Kovsh, V. M. Ustinov, Yu. G. Musikhin, N. N. Ledentsov, S. G. Konnikov, A. Polimeni, A. Patane, P. C. Main, L. Eaves, and C. M. A. Kapteyn, J. Electron. Mater. 28, 486 (1999).

    Article  ADS  Google Scholar 

  9. C. M. A. Kapteyn, F. Heinrichsdorff, O. Stier, R. Heitz, M. Grundmann, N. D. Zakharov, D. Bimberg, and P. Werner, Phys. Rev. B 60, 14265 (1995).

    Article  ADS  Google Scholar 

  10. A. A. Gutkin, P. N. Brunkov, A. Yu. Egorov, A. E. Zhukov, and S. G. Konnikov, Semiconductors 42, 1104 (2008).

    Article  ADS  Google Scholar 

  11. C. M. A. Kapteyn, M. Lion, R. Heitz, D. Bimberg, P. Brunkov, V. B. Volovik, S. G. Konnikov, A. R. Kovsh, and V. M. Ustinov, Appl. Phys. Lett. 76, 1573 (2000).

    Article  ADS  Google Scholar 

  12. W.-H. Chang, W. Y. Chen, M. C. Cheng, C. Y. Lai, T. M. Hsu, N.-T. Yeh, and J.-I. Chyi, Phys. Rev. B 64, 125315 (2001).

    Article  ADS  Google Scholar 

  13. W.-H. Chang, W. Y. Chen, T. M. Hsu, N.-T. Yeh, and J.-I. Chyi, Phys. Rev. B 66, 195337 (2002).

    Article  ADS  Google Scholar 

  14. D. L. Losee, J, Appl. Phys. 46, 2204 (1975).

    Article  ADS  Google Scholar 

  15. G. Prior, Phys. Rev. B 57, 7160 (1998).

    ADS  Google Scholar 

  16. M. Grundmann, O. Stier, and D. Bimberg, Phys. Rev. B 52, 11969 (1995).

    Article  ADS  Google Scholar 

  17. O. Stier, M. Grundmann, and D. Bimberg, Phys. Rev. B 59, 5888 (1999).

    Article  ADS  Google Scholar 

  18. Qiuji Zhao and Ting Mei, J. Appl. Phys. 109, 063101 (2011).

    Article  ADS  Google Scholar 

  19. P. N. Brunkov, E. V. Monakhov, A. Yu. Kuznetsov, A. A. Gutkin, A. V. Bobyl, Yu. G. Musikhin, A. E. Zhukov, V. M. Ustinov, and S. G. Konnikov, in Physics of Semiconductors: Proceedings of the 27th International Conference on Physics of Semiconductors, Ed. by J. Menendez and C. G. van de Walle (American Inst. of Physics, 2005), p. 789.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Baklanov.

Additional information

Original Russian Text © A.V. Baklanov, A.A. Gutkin, P.N. Brunkov, A.Yu. Egorov, S.G. Konnikov, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 9, pp. 1186–1191.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baklanov, A.V., Gutkin, A.A., Brunkov, P.N. et al. Analysis of thermal emission processes of electrons from arrays of InAs quantum dots in the space charge region of GaAs matrix. Semiconductors 48, 1155–1160 (2014). https://doi.org/10.1134/S1063782614090048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614090048

Keywords

Navigation