Skip to main content
Log in

Modeling the efficiency of multijunction solar cells

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The efficiency of multijunction solar cells (MSCs) η is calculated taking into account radiative recombination, Shockley-Read recombination, front and rear surface recombination, recombination in the space-charge regions, and recombination at heterojunctions. Calculation is performed by self-consistent solution of the photocurrent, photovoltage, and heat-balance equations. MSC cooling by increasing the numbers of cells n and improvement in the conditions of heat removal is taken into account. An effect leading to a decrease in the photocurrent with increasing n, associated with narrowing of the energy ranges of photons incident on the MSC cell, is considered. It is found that a significant increase in the MSC efficiency can be achieved by improving the heat-removal conditions, in particular, through the use of radiators and increasing the MSC grayness factor to unity. The results obtained are compared to those of other authors. It is shown that the calculated dependences η(n) are in agreement with experimental values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://www.nrel.gov/

  2. P. T. Landsberg and V. Badescu, Prog. Quantum. Electron. 22, 211 (1998).

    Article  ADS  Google Scholar 

  3. P. T. Landsberg and V. Badescu, Prog. Quantum. Electron. 22, 231 (1998).

    Article  ADS  Google Scholar 

  4. M. A. Green, Third Generation Photovoltaic, Advanced Solar Energy Conversion Series, Springer Series in Photonics, Vol. 12 (Springer, 2003).

    Google Scholar 

  5. D. Ding, S. R. Johnson, S.-Q. Yu, S.-N. Wu, and Y.-H. Zhang, J. Appl. Phys. 110, 123104 (2011).

    Article  ADS  Google Scholar 

  6. Zh. I. Alferov, V. M. Andreev, and V. D. Rumyantsev, Semiconductors 38, 899 (2004).

    Article  ADS  Google Scholar 

  7. M. F. Dias-Aquado, J. Grinbaum, W. T. Fowler, and E. G. Lightsey, Proc. SPIE 6221, 622109 (2006).

    Article  Google Scholar 

  8. S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2007).

    Google Scholar 

  9. V. M. Andreev, V. V. Evstropov, V. S. Kalinovsky, V. M. Lantratov, and V. P. Khvostikov, Semiconductors 43, 644 (2009).

    Article  ADS  Google Scholar 

  10. A. P. Gorban, A. V. Sachenko, V. P. Kostylyov, and N. A. Prima, Semicond. Phys. Quantum. Electron. Optoelectron. 3, 322 (2000).

    Google Scholar 

  11. O. Yu. Borkovskaya, N. L. Dmitruk, V. G. Lyapin, and A. V. Sachenko, Thin Solid Films 451–452, 402 (2004).

    Article  Google Scholar 

  12. http://matprop.ru

  13. M. M. Koltun, Selective Optical Surfaces or Solar Energy Converters (Allerton, New York, 1981; Moscow, Nauka, 1979).

    Google Scholar 

  14. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, Progr. Photovolt.: Res. Appl. 20, 12 (2012).

    Article  Google Scholar 

  15. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, D. D. Krut, J. H. Ermer, R. A. Sherif, and N. H. Karam, Adv. Opto Electron. 2007, 29523 (2007).

    Google Scholar 

  16. B. Mitchell, G. Peharz, G. Siefer, M. Peters, T. Gandy, J. C. Goldschmidt, J. Benick, S. W. Glunz, A. W. Bett, and F. Dimroth, Progr. Photovolt.: Appl. 19, 61 (2011).

    Article  Google Scholar 

  17. R. I. Dzhioev and K. V. Kavokin, Sov. Phys. Solid State 33, 1257 (1991).

    Google Scholar 

  18. A. Barnett, D. Kirkpatrick, C. Honsberg, et al., in Proceedings of the 22nd European Photovoltaic Solar Energy Conference (Milan, Italy, 2007), p. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Sachenko.

Additional information

Original Russian Text © A.B. Sachenko, V.P. Kostylyov, N.R. Kulish, I.O. Sokolovskyi, A.I. Shkrebty, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 5, pp. 693–701.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachenko, A.B., Kostylyov, V.P., Kulish, N.R. et al. Modeling the efficiency of multijunction solar cells. Semiconductors 48, 675–682 (2014). https://doi.org/10.1134/S1063782614050182

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614050182

Keywords

Navigation