Skip to main content
Log in

Observation of Laser Radiation Scattering Effects in Explosion Products of Thin Molybdenum Wires

  • PLASMA DIAGNOSTICS
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Results of laser probing of products of electrical explosion of thin molybdenum wires in air (20 kV, 10 kA, 350 ns) are presented. Shadow and interferometric images of the discharge gap were obtained simultaneously using probing radiation at two wavelengths (λ1 = 1064 nm and λ2 = 532 nm). Comparison of images revealed that an increase in the probing wavelength results in substantial increase in transparency of the so-called core, the most long-lived and relatively dense remnants of the wire material, at a relatively late stage of expansion (one microsecond and more after beginning of current). These observations can be explained if we consider that the core material to a large extent consists of small, on the order of one hundred nanometers, particles, scattering from which obeys the Rayleigh dependence on wavelength (~λ–4). Presented results show that scattering should certainly be taken into account when analyzing the data of shadow and interferometric probing in studies of electrical explosion of wires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. It was found later that modern Canon cameras can also be used for detection of radiation in the near infrared spectral range after removing internal filters. This question requires further study because it is of interest for low-budget studies.

REFERENCES

  1. Exploding Wires, Ed. by W. G. Chase and H. K. Moore (Plenum, New York, 1959−1968), Vols. 1−4.

  2. W. Müller, in Exploding Wires, Ed. by W. G. Chase and H. K. Moore (Plenum, New York, 1959), Vol. 1, p. 186.

    Google Scholar 

  3. W. G. Chace, Phys. Fluids 2, 230 (1959).

    Article  ADS  Google Scholar 

  4. G. V. Ivanenkov, A. R. Mingaleev, S. A. Pikuz, V. M. Romanova, V. Stepnevski, D. Khammer, and T. A. Shelkovenko, J. Exp. Theor. Phys. 87, 633 (1998). https://doi.org/10.1134/1.558708

    Article  ADS  Google Scholar 

  5. S. A. Pikuz, T. A. Shelkovenko, D. B. Sinars, J. B. Greenly, Y. S. Dimant, and D. A. Hammer, Phys. Rev. Lett. 83, 4313 (1999). https://doi.org/10.1103/PhysRevLett.83.4313

    Article  ADS  Google Scholar 

  6. V. M. Romanova, G. V. Ivanenkov, A. R. Mingaleev, A. E. Ter-Oganesyan, I. N. Tilikin, T. A. Shelkovenko, and S. A. Pikuz, Phys. Plasmas 25, 112704 (2018). https://doi.org/10.1063/1.5052549

  7. V. S. Vorob’ev, S. P. Malyshenko, S. I. Tkachenko, and V. E. Fortov, JETP Lett. 75, 373 (2002). https://doi.org/10.1134/1.1490002

    Article  ADS  Google Scholar 

  8. S. I. Tkachenko, V. S. Vorob’ev, and S. P. Malyshenko, J. Phys. D: Appl. Phys. 37, 495 (2004). https://doi.org/10.1088/0022-3727/37/3/030

    Article  ADS  Google Scholar 

  9. S. I. Tkachenko, K. V. Khishchenko, V. S. Vorob’ev, P. R. Levashov, I. V. Lomonosov, and V. E. Fortov, High Temp. 39, 674 (2001).

    Article  Google Scholar 

  10. V. V. Zhakhovsky, S. A. Pikuz, S. I. Tkachenko, P. V. Sasorov, T. A. Shelkovenko, P. F. Knapp, C. C. Saylor, and D. A. Hammer, AIP Conf. Proc. 1426, 1207 (2012). https://doi.org/10.1063/1.3686497

    Article  ADS  Google Scholar 

  11. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1963; Academic, New York, 1966, 1967), Vols. 1 and 2.

  12. Y. A. Kotov, J. Nanopart. Res. 5, 539 (2003).

    Article  ADS  Google Scholar 

  13. K. Sindhu, R. Sarathi, and S. R. Chakravarthy, Nanotecnology 19, 025703 (2008). https://doi.org/10.1088/0957-4484/19/02/025703

  14. A. Pervikov, A. Lozhkomoev, O. Bakina, and M. Lerner, Solid State Sci. 87, 146 (2019). https://doi.org/10.1016/j.solidstatesciences.2018.11.016

    Article  ADS  Google Scholar 

  15. S. Yu. Gus’kov, G. V. Ivanenkov, S. A. Pikuz, and T. A. Shelkovenko, Quantum Electron. 33, 958 (2003).

    Article  ADS  Google Scholar 

  16. E. V. Parkevich, G. V. Ivanenkov, M. A. Medvedev, A. I. Khirianova, A. S. Selyukov, A. V. Agafonov, A. R. Mingaleev, T. A. Shelkovenko, and S. A. Pikuz, Plasma Sources Sci. Technol. 27, 11LT01 (2018). https://doi.org/10.1088/1361-6595/aaebdb

  17. T. A. Shelkovenko, S. A. Pikuz, and D. A. Hammer. Plasma Phys. Rep. 42, 226 (2016). https://doi.org/10.1134/S1063780X16030065

    Article  ADS  Google Scholar 

  18. S. N. Kolgatin, M. N. Lev, B. P. Peregud, A. M. Stepanov, T. A. Fedorova, A. S. Furman, and A. V. Khachaturyants, Sov. Phys.–Tech. Phys. 34, 1029 (1989).

    Google Scholar 

  19. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957)

    Book  Google Scholar 

  20. V. M. Romanova, G. V. Ivanenkov, E. V. Parkevich, I. N. Tilikin, M. A. Medvedev, T. A. Shelkovenko, S. A. Pikuz, and A. S. Selyukov, J. Phys. D: Appl. Phys. 54, 175201 (2021). https://doi.org/10.1088/1361-6463/abdce5

  21. V. M. Romanova, G. V. Ivanenkov, A. R. Mingaleev, A. E. Ter-Oganesyan, T. A. Shelkovenko, and S. A. Pikuz, Plasma Phys. Rep. 41, 617 (2015). https://doi.org/10.1134/S1063780X15080085

    Article  ADS  Google Scholar 

  22. S. A. Pikuz, V. M. Romanova, N. V. Baryshnikov, M. Hu, B. R. Kusse, D. B. Sinars, T. A. Shelkovenko, and D. A. Hammer, Rev. Sci. Instrum. 72, 1098 (2001). https://doi.org/10.1063/1.1321746

    Article  ADS  Google Scholar 

  23. A. N. Zaidel’ and G. V. Ostrovskaya, Laser Methods in Plasma Studies (Nauka, Leningrad, 1977) [in Russian].

    Google Scholar 

  24. Y. Lu, J. Wu, H. Shi, D. Zhang, X. Li, Sh. Jia, and A. Qiu, Phys. Plasmas 25, 072709 (2018). https://doi.org/10.1063/1.5040575

  25. A. Khirianova, E. Parkevich, M. Medvedev, Kh. Smaznova, T. Khirianov, E. Varaksina, and A. Selyukov, Opt. Express 29, 14941 (2021). https://doi.org/10.1364/OE.421460

    Article  ADS  Google Scholar 

  26. S. A. Pikuz, T. A. Shelkovenko, C. L. Hoyt, J. D. Douglass, I. N. Tilikin, A. R. Mingaleev, V. M. Romanova, and D. A. Hammer, IEEE Trans. Plasma Sci. 43, 2520 (2015). https://doi.org/10.1109/TPS.2015.2440101

    Article  ADS  Google Scholar 

  27. F. Lv, P. Liu, H. Qi, J. Liu, R. Sun, and W. Wang, Comput. Mater. Sci. 170, 109142 (2019). https://doi.org/10.1016/j.commatsci.2019.109142

Download references

Funding

This research was supported by the Russian Science Foundation, project no. 19-79-30086. Development of the system of laser probing was partially supported by grant D-E‑NA0003764.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Romanova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanova, V.M., Tilikin, I.N., Ter-Oganesyan, A.E. et al. Observation of Laser Radiation Scattering Effects in Explosion Products of Thin Molybdenum Wires. Plasma Phys. Rep. 48, 121–130 (2022). https://doi.org/10.1134/S1063780X2202012X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X2202012X

Keywords:

Navigation