Skip to main content
Log in

Investigation of Ion-Acoustic Solitons in Magnetosphere and Tokamak Warm Plasma with Two-Temperature Electrons

  • Nonlinear Phenomena
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The properties of oblique propagation of small amplitude ion-acoustic soliton are investigated in a plasma containing weakly relativistic ions and two-temperature electrons (cold and hot electrons). The reductive perturbation method is used to derive the Korteweg−de Vries equation for the present plasma model. It is found that the parameters determining the nature of soliton are different for compressive or rarefactive structures. Moreover, the effects of weakly relativistic ions, the temperature ratio, and the density ratio of hot-to-cold electron species on soliton characters are studied. The theory is applied on the case of relativistic ions observed in the magnetosphere and in the case of nonrelativistic ions observed in tokamaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Y. Lee, Y. Nishida, N. C. Luhmann, Jr., S. P. Obenschain, B. Gu, M. Rhodes, J. R. Albritton, and E. A. Williams, Phys. Rev. Lett. 48, 319 (1982).

    Article  ADS  Google Scholar 

  2. S. M. Motevalli, T. Mohsenpour, and N. Dashtban, Eur. Phys. J. Plus 131, 330 (2016).

    Article  Google Scholar 

  3. M. W. Stacey, Fusion: An Introduction to the Physics and Technology of Magnetic Confinement Fusion (Wiley, New York, 2010).

    Book  Google Scholar 

  4. S. M. Motevalli and M. Safari, Fusion Eng. Des. 112, 53 (2016).

    Article  Google Scholar 

  5. N. L. Oleson and C. G. Found, J. Appl. Phys. 20, 416 (1949).

    Article  ADS  Google Scholar 

  6. R. B. Spielman, J. S. De Groot, and D. A. Rasmussen, J. Appl. Phys. 47, 1909 (1976).

    Article  ADS  Google Scholar 

  7. J. Geiss, H. Balsiger, P. Eberhadt, H. P. Walker, L. Weber, D. T. Yaongo, and W. Rosenbaufer, Space Sci. Rev. 22, 537 (1978).

    Article  ADS  Google Scholar 

  8. S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 41, 341 (1989).

    Article  ADS  Google Scholar 

  9. L. L. Yadav and S. R. Sharma, Phys. Lett. A 150, 397 (1990).

    Article  ADS  Google Scholar 

  10. S. Baboolal, R. Bharuthram, and M. A. Hellberg, J. Plasma Phys. 44, 1 (1990).

    Article  ADS  Google Scholar 

  11. W. K. M. Rice, M. A. Hellberg, R. L. Mace, and R. Hellberg, Phys. Lett. A 174, 416 (1993).

    Article  ADS  Google Scholar 

  12. S. S. Ghosh, K. K. Ghosh, and A. N. Sekar Iyengar, Phys. Plasmas 3, 3939 (1996).

    Article  ADS  Google Scholar 

  13. S. S. Ghosh and A. N. Sekar Iyengar, Phys. Plasmas 4, 3204 (1997).

    Article  ADS  Google Scholar 

  14. T. K. Baluku, M. Hellberg, and F. Hellberg, Europhys. Lett. 91, 15001 (2010).

    Article  ADS  Google Scholar 

  15. Y, Nakamura and H. Sugai, Chaos Solitons Fractals 7, 102 (1996).

    Article  Google Scholar 

  16. W. D. Jones, A. L. Lee, S. M. Gleman, and H. J. Doucet, Phys. Rev. Lett. 35, 1349 (1975).

    Article  ADS  Google Scholar 

  17. M. A. Rehman and M. K. Mirsha, Phys. Plasmas 23, 012302 (2016).

    Article  ADS  Google Scholar 

  18. B. N. Goswaminm and B. Buti, Phys. Lett. A 57, 149 (1976).

    Article  ADS  Google Scholar 

  19. T. K. Baluku and M. A. Hellberg, Phys. Plasmas 19, 012106 (2012).

    Article  ADS  Google Scholar 

  20. A. S. Bains, A. Panwar, and C. M. Ryu, Astrophys. Space Sci. 360, 17 (2015).

    Article  ADS  Google Scholar 

  21. G. S. Lakhina, A. P. Kakad, S. V. Singh, and F. Verheest, Phys. Plasmas 15, 062903 (2008).

    Article  ADS  Google Scholar 

  22. P. K. Shukla and S. G. Tagare, Phys. Lett. A 59, 38 (1976).

    Article  ADS  Google Scholar 

  23. K. Nishihara and M. Tajiri, J. Phys. Soc. Jpn 50, 4047 (1981).

    Article  ADS  Google Scholar 

  24. S. G. Tagare and M. Tajiri, Phys. Plasmas 7, 883 (2000).

    Article  ADS  Google Scholar 

  25. T. K. Baluku and M. A. Hellberg, Phys. Plasmas 19, 012106 (2012).

    Article  ADS  Google Scholar 

  26. S. K. Maharaj, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 19, 072320 (2012).

    Article  ADS  Google Scholar 

  27. M. K. Mishra, R. S. Tiwari, and J. K. Chawla, Phys. Plasmas 19, 062303 (2012).

    Article  ADS  Google Scholar 

  28. O. R. Rufai, R. Bharuthram, S. V. Singh, and G. S. Lakhina, Phys. Plasmas 23, 032309 (2016).

    Article  ADS  Google Scholar 

  29. O. R. Rufai and R. Bharuthram, Phys. Plasmas 23, 092306 (2016).

    Article  ADS  Google Scholar 

  30. M. N. Kadijani, H. Abbasi, and H. H. Pajouh, Plasma Phys. Controlled Fusion 53, 025004 (2011).

    Article  ADS  Google Scholar 

  31. Y. Nejoh, J. Plasma Phys. 37, 487 (1987).

    Article  ADS  Google Scholar 

  32. H. K. Malik, S. Singh, and R. P. Dahiya, Phys. Plasmas 1, 1137 (1994).

    Article  ADS  Google Scholar 

  33. H. K. Malik, S. Singh, and R. P. Dahiya, Phys. Lett. A 195, 369 (1994).

    Article  ADS  Google Scholar 

  34. H. K. Malik, IEEE Trans. Plasma Sci. 23, 813 (1995).

    Article  ADS  Google Scholar 

  35. Y. Nejoh, Phys. Plasmas 1, 2154 (1994).

    Article  ADS  Google Scholar 

  36. H. K. Malik, Phys. Rev. E 54, 5844 (1996).

    Article  ADS  Google Scholar 

  37. T. S. Gill, A. Singh, H. Kaur, N. S. Saini, and P. Bala, Phys. Lett. A 361, 364 (2007).

    Article  ADS  Google Scholar 

  38. R. Saeed, A. Shah, and M. Noaman-ul-Haq, Phys. Plasmas 17, 102301 (2010).

    Article  ADS  Google Scholar 

  39. H. R. Pakzad, Indian J. Phys. 83, 1605 (2009).

    Article  ADS  Google Scholar 

  40. V. K. Sayal, L. L. Yadav, and S. R. Sharma, Phys. Scri. 47, 576 (1993).

    Article  ADS  Google Scholar 

  41. N. S. Saini, Astrophys. Space Sci. 346, 155 (2013).

    Article  ADS  Google Scholar 

  42. B. Choudhury, R. Goswami. G. C. Das, and M. P. Bora, Phys. Plasmas 20, 042902 (2013).

    Article  ADS  Google Scholar 

  43. P. Chatterjee and R. Roychoudhury, Can. J. Phys. 75, 337 (1997).

    Article  ADS  Google Scholar 

  44. H. Alinejad, Astrophys. Space Sci. 345, 85 (2013).

    Article  ADS  Google Scholar 

  45. H. Alinejad and A. A. Mamun, Phys. Plasmas 18, 112103 (2011).

    Article  ADS  Google Scholar 

  46. B. C. Kalita and R. Das, Phys. Plasmas 14, 072108 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  47. R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1966), Vol. 4, p. 23.

  48. V. E. Zakharov and L. D. Faddeev, Funct. Anal. Appl. 5, 280 (1971).

    Article  Google Scholar 

  49. S. I. Popel and M. Y. Yu, Contrib. Plasma Phys. 35, 103 (1995).

    Article  ADS  Google Scholar 

  50. S. I. Popel, Plasma Phys. Rep. 27, 448 (2001).

    Article  ADS  Google Scholar 

  51. T. V. Losseva and S. I. Popel, Plasma Phys. Rep. 38, 729 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Motevalli.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dashtban, N., Motevalli, S.M. & Mohsenpour, T. Investigation of Ion-Acoustic Solitons in Magnetosphere and Tokamak Warm Plasma with Two-Temperature Electrons. Plasma Phys. Rep. 44, 854–860 (2018). https://doi.org/10.1134/S1063780X18090027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18090027

Navigation