Skip to main content
Log in

Calculation of Thermal Conductivity Coefficients of Electrons in Magnetized Dense Matter

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

The solution of Boltzmann equation for plasma in magnetic field with arbitrarily degenerate electrons and nondegenerate nuclei is obtained by Chapman−Enskog method. Functions generalizing Sonine polynomials are used for obtaining an approximate solution. Fully ionized plasma is considered. The tensor of the heat conductivity coefficients in nonquantized magnetic field is calculated. For nondegenerate and strongly degenerate plasma the asymptotic analytic formulas are obtained and compared with results of previous authors. The Lorentz approximation with neglecting of electron−electron encounters is asymptotically exact for strongly degenerate plasma. For the first time, analytical expressions for the heat conductivity tensor for nondegenerate electrons in the presence of a magnetic field are obtained in the three-polynomial approximation with account of electron−electron collisions. Account of the third polynomial improved substantially the precision of results. In the two-polynomial approximation, the obtained solution coincides with the published results. For strongly degenerate electrons, an asymptotically exact analytical solution for the heat conductivity tensor in the presence of a magnetic field is obtained for the first time. This solution has a considerably more complicated dependence on the magnetic field than those in previous publications and gives a several times smaller relative value of the thermal conductivity across the magnetic field at ωτ * 0.8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Page, U. Geppert, and F. Weber, Nuclear Phys. A 777, 497 (2006).

    Article  ADS  Google Scholar 

  2. J. A. Pons, F. M. Walter, J. M. Lattimer, M. Prakash, R. Neuhäuser, and P. An, Astrophys. J. 564, 981 (2002).

    Article  ADS  Google Scholar 

  3. V. E. Zavlin, Astrophys. J. 665, L143 (2007).

    Article  ADS  Google Scholar 

  4. A. V. Kuznetsov and N. V. Mikheev, Electroweak Processes in Active Environment (Izd. Yaroslavskogo Gos. Univ. im. P.G. Demidova, Yaroslavl, 2010) [in Russian].

    Google Scholar 

  5. D. N. Aguilera, J. A. Pons, and J. A. Miralles, Astron. Astrophys. 486, 271 (2008).

    Article  ADS  Google Scholar 

  6. D. G. Yakovlev, K. P. Levenfish, and Yu. A. Shibanov, Phys. Usp. 42, 737 (1999).

    Article  ADS  Google Scholar 

  7. E. E. Salpeter, Astrophys. J. 134, 669 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  8. E. Flowers and N. Itoh, Astrophys. J. 206, 218 (1976).

    Article  ADS  Google Scholar 

  9. D. G. Yakovlev and V. A. Urpin, Sov. Astron. 24, 303 (1980).

    ADS  Google Scholar 

  10. N. Itoh, H. Hayashi, and Y. Kohyama, Astrophys. J. 418, 405 (1993).

    Article  ADS  Google Scholar 

  11. D. G. Yakovlev, O. Y. Gnedin, A. D. Kaminker, K. P. Levenfish, and A. Y. Potekhin, Adv. Space Res. 33, 523 (2006).

    Article  ADS  Google Scholar 

  12. S. Chapman and T. G. Cowling, Mathematical Theory of Nonuniform Gases (Cambridge University Press, Cambridge, 1952).

    MATH  Google Scholar 

  13. E. Uehling and G. Uhlenbeck, Phys. Rev. 43, 552 (1933).

    Article  ADS  Google Scholar 

  14. E. Uehling, Phys. Rev. 46, 917 (1934).

    Article  ADS  Google Scholar 

  15. S. Z. Tomonaga, Z. Phys. 110, 573 (1938).

    Article  ADS  Google Scholar 

  16. G. S. Bisnovatyi-Kogan and M. M. Romanova, JETP 56, 243 (1983).

    Google Scholar 

  17. V. S. Imshennik, Sov. Phys. Astron. 5, 495 (1961).

    ADS  Google Scholar 

  18. L. D. Landau, Zh. Eksp. Teor. Fiz. 7, 203 (1937).

    Google Scholar 

  19. S. Chandrssekhar, Rev. Mod. Phys. 15, 1 (1943).

    Article  ADS  Google Scholar 

  20. M. Rosenbluth, W. M. Macdonald, and D. L. Judd, Phys. Rev. 107, 1 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  21. B. A. Trubnikov, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p.105.

    ADS  Google Scholar 

  22. R. Landshoff, Phys. Rev. 82, 442 (1951).

    Article  ADS  Google Scholar 

  23. W. Marshall, Report No. T/R 2419 (Atomic Energy Research Establishment, Harwell, 1960).

  24. G. S. Bisnovatyi-Kogan, Diploma Thesis (Moscow Institute of Physics and Technology, Dolgoprudnyi, 1964).

  25. G. S. Bisnovatyi-Kogan, Prik. Mekh. Tekh. Fiz., No. 3, 43 (1964).

    Google Scholar 

  26. S. I. Braginskii, JETP 6, 358 (1958).

    ADS  MathSciNet  Google Scholar 

  27. N. A. Bobrova and P. V. Sasorov, Plasma Phys. Rep. 19, 409 (1993).

    ADS  Google Scholar 

  28. E. M. Epperlein and M. G. Haines, Phys. Fluids 29, 1029 (1986).

    Article  ADS  Google Scholar 

  29. A. A. Wyller, Astrophis. Norvegica 9, 79 (1964).

    ADS  Google Scholar 

  30. M. Lampe, Phys. Rev. 170, 306 (1968).

    Article  ADS  Google Scholar 

  31. A. Wiranata and M. Prakash, Phys. Rev. C 85, 5 (2012).

    Article  Google Scholar 

  32. A. Wiranata, M. Prakash, and P. Chakraborty, Central Eur. J. Phys. 10, 1349 (2012).

    ADS  Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon, Oxford, 1980).

    MATH  Google Scholar 

  34. D. Burnett, Proc. London Math. Soc. 40, 382 (1936).

    Article  Google Scholar 

  35. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley Interscience, New York, 1975).

    MATH  Google Scholar 

  36. G. S. Bisnovatyi-Kogan, Stellar Physics I: Fundamental Concepts and Stellar Equilibrium (Springer, Berlin, 2001).

    MATH  Google Scholar 

  37. V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  38. E. Jahnke, F. Emde, and F. Lösch, Tables of Higher Functions (McGraw-Hill, New York, 1960).

    MATH  Google Scholar 

  39. L. E. Kalikhman, Elements of Magnetohydrodynamics (Atomizdat, Moscow, 1964) [in Russian].

    Google Scholar 

  40. E. Schatzman, White Dwarfs (North Holland, Amsterdam, 1958).

    MATH  Google Scholar 

  41. A. A. Wyller, Astrophys. J. 184, 517 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bisnovatyi-Kogan.

Additional information

Published in Russian in Fizika Plazmy, 2018, Vol. 44, No. 4, pp. 355–374.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bisnovatyi-Kogan, G.S., Glushikhina, M.V. Calculation of Thermal Conductivity Coefficients of Electrons in Magnetized Dense Matter. Plasma Phys. Rep. 44, 405–423 (2018). https://doi.org/10.1134/S1063780X18040013

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18040013

Navigation