Skip to main content
Log in

Wave processes in dusty plasma near the Moon’s surface

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

A plasma—dust system in the near-surface layer on the illuminated side of the Moon is described. The system involves photoelectrons, solar-wind electrons and ions, neutrals, and charged dust grains. Linear and nonlinear waves in the plasma near the Moon’s surface are discussed. It is noticed that the velocity distribution of photoelectrons can be represented as a superposition of two distribution functions characterized by different electron temperatures: lower energy electrons are knocked out of lunar regolith by photons with energies close to the work function of regolith, whereas higher energy electrons are knocked out by photons corresponding to the peak at 10.2 eV in the solar radiation spectrum. The anisotropy of the electron velocity distribution function is distorted due to the solar wind motion with respect to photoelectrons and dust grains, which leads to the development of instability and excitation of high-frequency oscillations with frequencies in the range of Langmuir and electromagnetic waves. In addition, dust acoustic waves can be excited, e.g., near the lunar terminator. Solutions in the form of dust acoustic solitons corresponding to the parameters of the dust—plasma system in the near-surface layer of the illuminated Moon’s surface are found. Ranges of possible Mach numbers and soliton amplitudes are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Elphic, G. T. Delory, B. P. Hine, P. R. Mahaffy, M. Horanyi, A. Colaprete, M. Benna, S. K. Noble, and The LADEE Science Team, Space Sci. Rev. 185, 3 (2014).

    Article  ADS  Google Scholar 

  2. J. J. Rennilson and D. R. Criswell, Moon 10, 121 (1974).

    Article  ADS  Google Scholar 

  3. H. Zook and J. McCoy, Geophys. Rev. Lett. 18, 2117 (1991).

    Article  ADS  Google Scholar 

  4. R. Elphic, T. Stubbs, and LADEE Science PI Team, in Proceedings of the 40th COSPAR Scientific Assembly, Moscow, 2014, p. B0.1-0011-14.

    Google Scholar 

  5. F. Verheest, Waves in Dusty Space Plasmas (Kluwer, Dordrecht, 2000).

    Book  Google Scholar 

  6. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP, Bristol, 2002).

    Book  Google Scholar 

  7. V. N. Tsytovich, G. Morfill, S. Vladimirov, and H. Thomas, Elementary Physics of Complex Plasmas (Springer Verlag, New York, 2008).

    Book  MATH  Google Scholar 

  8. V. E. Fortov, A. V. Ivlev, S. A. Khrapak, A. G. Khrapak, and G. E. Morfill, Phys. Rep. 421, 1 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  9. C. Arnas, M. Mikikian, and F. Doveil, Phys. Rev. E 60, 7420 (1999).

    Article  ADS  Google Scholar 

  10. C. Arnas, M. Mikikian, G. Bachet, and F. Doveil, Phys. Plasmas 7, 4418 (2000).

    Article  ADS  Google Scholar 

  11. A. A. Sickafoose, J. E. Colwell, M. Horányi, and S. Robertson, J. Geophys. Res. 105, 8343 (2001).

    Article  ADS  Google Scholar 

  12. A. A. Sickafoose, J. E. Colwell, M. Horányi, and S. Robertson, J. Geophys. Res. 107 (A11), 1408 (2002).

    Article  Google Scholar 

  13. Z. Sternovsky, S. Robertson, A. A. Sickafoose, J. Colwell, and M. Horányi, J. Geophys. Res. 107 (E11), 5105 (2002).

    Article  Google Scholar 

  14. J. E. Colwell, S. Batiste, M. Horányi, S. Robertson, and S. Sture, Rev. Geophys. 45, RG2006 (2007).

  15. J. E. Colwell, S. Robertson, M. Hornyi, A. Poppe, and P. Wheeler, J. Aerospace Eng. 22 (1), 2 (2009).

    Article  Google Scholar 

  16. T. J. Stubbs, R. R. Vondrak, and W. M. Farrell, Adv. Space Res. 37, 59 (2006).

    Article  ADS  Google Scholar 

  17. T. J. Stubbs, R. R. Vondrak, W. M. Farrell, and M. R. Collier, J. Astronautics 28, 166 (2007).

    Google Scholar 

  18. Z. Sternovsky, P. Chamberlin, M. Hornyi, S. Robertson, and X. Wang, J. Geophys. Res. 113, A10104 (2008).

    Article  Google Scholar 

  19. A. P. Golub’, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, Yu. N. Izvekova, S. I. Kopnin, and S. I. Popel, JETP Lett. 95, 182 (2012).

    Article  ADS  Google Scholar 

  20. S. I. Popel, S. I. Kopnin, A. P. Golub’, G. G. Dol’-nikov, A. V. Zakharov, L. M. Zelenyi, and Yu. N. Izvekova, Solar System Res. 47, 419 (2013).

    Article  ADS  Google Scholar 

  21. S. I. Popel and L. M. Zelenyi, J. Plasma Phys. 79, 405 (2013).

    Article  ADS  Google Scholar 

  22. E. A. Lisin, V. P. Tarakanov, O. F. Petrov, S. I. Popel, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, and V. E. Fortov, JETP Lett. 98, 664 (2013).

    Article  ADS  Google Scholar 

  23. S. I. Popel, G. E. Morfill, P. K. Shukla, and H. Thomas, J. Plasma Phys. 79, 1071 (2013).

    Article  ADS  Google Scholar 

  24. S. I. Popel, A. P. Golub’, Yu. N. Izvekova, V. V. Afonin, G. G. Dol’nikov, A. V. Zakharov, L. M. Zelenyi, E. A. Lisin, and O. F. Petrov, JETP Lett. 99, 115 (2014).

    Article  ADS  Google Scholar 

  25. S. I. Popel, A. P. Golub’, and L. M. Zelenyi, Eur. Phys. J. D 68 (9), 245 (2014).

    Article  ADS  Google Scholar 

  26. S. I. Popel and L. M. Zelenyi, J. Plasma Phys. 80, 885 (2014).

    Article  ADS  Google Scholar 

  27. S. A. Stern, Rev. Geophys. 37, 453 (1999).

    Article  ADS  Google Scholar 

  28. T. J. Stubbs, D. A. Glenar, W. M. Farrell, R. R. Vondrak, M. R. Collier, J. S. Halekas, and G. T. Delory, Planet. Space Sci. 59, 1659 (2011).

    Article  ADS  Google Scholar 

  29. V. V. Adushkin, L. M. Pernik, and S. I. Popel, Doklady Earth Sci. 415, 820 (2007).

    Article  ADS  Google Scholar 

  30. E. Walbridge, J. Geophys. Res. 78, 3668 (1973).

    Article  ADS  Google Scholar 

  31. R. Vondrak, Private communication (2013).

    Google Scholar 

  32. R. F. Willis, M. Anderegg, B. Feuerbacher, and B. Fitton, in Photon and Grain Interactions with Surfaces in Space, Ed. by R. J. L. Grard (Reidel, Dordrecht, 1973), p. 389.

  33. N. N. Rao, P. K. Shukla, and M. Y. Yu, Planet. Space Sci. 38, 543 (1990).

    Article  ADS  Google Scholar 

  34. J. Srinivas, S. I. Popel, and P. K. Shukla, J. Plasma Phys. 55, 209 (1996).

    Article  ADS  Google Scholar 

  35. S. I. Popel, Plasma Phys. Rep. 27, 448 (2001).

    Article  ADS  Google Scholar 

  36. S. I. Kopnin, I. N. Kosarev, S. I. Popel, and M. Y. Yu, Plasma Phys. Rep. 31, 198 (2005).

    Article  ADS  Google Scholar 

  37. S. I. Popel, S. I. Kopnin, I. N. Kosarev, and M. Y. Yu, Adv. Space Res. 37, 414 (2006).

    Article  ADS  Google Scholar 

  38. G. Lu, Y. Liu, Y. Wang, L. Stenflo, S. I. Popel, and M. Y. Yu, J. Plasma Phys. 76, 267 (2010).

    Article  ADS  Google Scholar 

  39. A. Barkan, R. L. Merlino, and N. D’Angelo, Phys. Plasmas 2, 3563 (1995).

    Article  ADS  Google Scholar 

  40. R. Z. Sagdeev, in Reviews of Plasma Physics, Ed. by M. A. Leontovich (Consultants Bureau, New York, 1968), Vol. 4, p. 23.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Popel.

Additional information

Original Russian Text © T.I. Morozova, S.I. Kopnin, S.I. Popel, 2015, published in Fizika Plazmy, 2015, Vol. 41, No. 10, pp. 867–876.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozova, T.I., Kopnin, S.I. & Popel, S.I. Wave processes in dusty plasma near the Moon’s surface. Plasma Phys. Rep. 41, 799–807 (2015). https://doi.org/10.1134/S1063780X15100062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X15100062

Keywords

Navigation