Skip to main content
Log in

The Lunar Atmosphere and Dust Environment Explorer Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Lunar Atmosphere and Dust Environment Explorer (LADEE) mission was designed to address long-standing scientific questions about the Moon’s environment, including the assessment of the composition of the lunar atmosphere, and characterization of the lunar dust environment at low orbital altitudes. LADEE was derived from the Modular Common Spacecraft Bus design that was developed at NASA Ames Research Center; it used modularized subassemblies and existing commercial spaceflight hardware to reduce cost. LADEE was launched on the very first Minotaur V, and was also the first deep space mission launched from Wallops Flight Facility in Virginia. LADEE was equipped with two in situ instruments and a remote sensing instrument to address the atmosphere and dust measurement requirements. LADEE also carried the first deep-space optical communications demonstration, the Lunar Laser Communications Demonstration. LADEE was launched in early September, 2013, took science data for over 140 days in low lunar orbit, and impacted the surface on April 18, 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. A retrograde orbit provides anti-sun facing orientation for the ram-facing neutral mass spectrometer over the sunrise terminator, a key region of the exosphere. There was concern that spacecraft outgassing on the sun-facing side would contaminate measurements.

References

  • J. Benson, J.W. Freeman, H.K. Hills, The lunar terminator ionosphere, in 6th Proc. Lunar. Sci. Conf. (1975), pp. 3013–3021

    Google Scholar 

  • D.M. Boroson, B.S. Robinson, The lunar laser communication demonstration: NASA’s first step toward very high data rate support of science and exploration missions. Space Sci. Rev. (2014, this issue)

  • A. Colaprete et al., The LADEE ultraviolet/visible spectrometer. Space Sci. Rev. (2014)

  • J.C. Cook, S.A. Stern, C.C.C. Tsang, K. Retherford, G.R. Gladstone, P. Feldman, New upper limits on numerous atmospheric species in the native lunar atmosphere. Icarus 225, 681–687 (2013)

    Article  ADS  Google Scholar 

  • P.D. Feldman, D.M. Hurley, K.D. Retherford, G.R. Gladstone, S.A. Stern, W. Pryor, J.Wm. Parker, D.E. Kaufmann, M.W. Davis, M.H. Versteeg, the LAMP Team, Temporal variability of lunar exospheric helium during January 2012 from LRO/LAMP. Icarus 221, 854–858 (2012)

    Article  ADS  Google Scholar 

  • P.D. Feldman, D.A. Glenar, T.J. Stubbs, K.D. Retherford, G.R. Gladstone, P.F. Miles, T.K. Greathouse, D.E. Kaufmann, J.Wm. Parker, S.A. Stern, Upper limits for a lunar dust exosphere from far-ultraviolet spectroscopy by LRO/LAMP. Icarus 233, 106–113 (2014)

    Article  ADS  Google Scholar 

  • J.W. Freeman Jr., H.K. Hills, The Apollo lunar surface water vapor event revisited. Geophys. Res. Lett. 18(11), 2109–2112 (1991)

    Article  ADS  Google Scholar 

  • D.A. Glenar, T.J. Stubbs, J.E. McCoy, R.R. Vondrak, A reanalysis of the Apollo light scattering observations, and implications for lunar exospheric dust. Planet. Space Sci. 59, 1695–1707 (2011)

    Article  ADS  Google Scholar 

  • P. Gorenstein, P. Bjorkholm, Detection of radon emanation from the crater Aristarchus by the Apollo 15 alpha particle spectrometer. Science 179, 792–794 (1973)

    Article  ADS  Google Scholar 

  • R.R. Hodges Jr., F.S. Johnson, Lateral transport in planetary exospheres. J. Geophys. Res. 73(23), 7307–7317 (1968)

    Article  ADS  Google Scholar 

  • R.R. Hodges, J.H. Hoffman, F.S. Johnson, The lunar atmosphere. Icarus 21, 415 (1974)

    Article  ADS  Google Scholar 

  • M. Horanyi, Sternovsky, M. Lankton, C. Dumont, S. Gagnard, D. Gathright, E. Gruen, D. Hansen, D. James, S. Kempf, B. Lamprecht, R. Srama, J.R. Szalay, G. Wright, The Lunar Dust Experiment (LDEX) onboard the Lunar Atmosphere and Dust Environment Explorer (LADEE). Space Sci. Rev. (2014)

  • F.S. Johnson, Lunar atmosphere. Rev. Geophys. 9(3), 813–823 (1971)

    Article  ADS  Google Scholar 

  • M. Kagitani, M. Taguchi, A. Yamazaki, I. Yoshikawa, G. Murakami, K. Yoshioka, S. Kameda, S. Okano, Variation in lunar sodium exosphere measured from lunar orbiter SELENE (Kaguya). Planet. Space Sci. 58, 1660–1664 (2010)

    Article  ADS  Google Scholar 

  • R.M. Killen, W.-H. Ip, The surface-bounded atmospheres of Mercury and the Moon. Rev. Geophys. 37(3), 361–406 (1999)

    Article  ADS  Google Scholar 

  • S.L. Lawson, W.C. Feldman, D.J. Lawrence, K.R. Moore, R.C. Elphic, R.D. Belian, S. Maurice, Recent outgassing from the lunar surface: The Lunar Prospector Alpha Particle Spectrometer. J. Geophys. Res. 110, E09009 (2005). doi:10.1029/2005JE002433

    ADS  Google Scholar 

  • P.R. Mahaffy, R. Richard Hodges, M. Benna, T. King, R. Arvey, M. Barciniak, M. Bendt, D. Carigan et al., The neutral mass spectrometer on the lunar atmosphere and dust environment explorer mission. Space Sci. Rev. (2014). doi:10.1007/s11214-014-0043-9

    Google Scholar 

  • J.E. McCoy, Photometric studies of light scattering above the lunar terminator from Apollo solar corona photography, in 7th Proc. Lunar Sci. Conf. (1976), pp. 515–517

    Google Scholar 

  • M. Mendillo, B. Flynn, J. Baumgardner, Imaging experiments to detect an extended sodium atmosphere on the Moon. Adv. Space Res. 13(10), 313–319 (1993)

    Article  ADS  Google Scholar 

  • A.E. Potter, T.H. Morgan, Discovery of sodium and potassium vapor in the atmosphere of the Moon. Science 241, 675–680 (1988)

    Article  ADS  Google Scholar 

  • A.E. Potter, T.H. Morgan, Evidence for suprathermal sodium on Mercury. Adv. Space Res. 19(10), 1571–1576 (1997)

    Article  ADS  Google Scholar 

  • A.E. Potter, R.M. Killen, T.H. Morgan, Variation of lunar sodium during passage of the Moon through the Earth’s magnetotail. J. Geophys. Res. 105, 15,073–15,084 (2000). doi:10.1029/1999JE001213

    Article  ADS  Google Scholar 

  • J.J. Rennilson, D.R. Criswell, Surveyor observations of lunar horizon glow. The Moon 10, 121–142 (1974)

    Article  ADS  Google Scholar 

  • S.M. Smith, J.K. Wilson, J. Baumgardner, M. Mendillo, Discovery of the distant lunar sodium tail and its enhancement following the Leonid meteor shower of 1998. Geophys. Res. Lett. 26(12), 1649–1652 (1999). doi:10.1029/1999GL900314

    Article  ADS  Google Scholar 

  • A.L. Sprague, R.W.H. Kozlowski, D.M. Hunten, W.K. Wells, F.A. Grosse, The sodium and potassium atmosphere of the Moon and its interaction with the surface. Icarus 96, 27–42 (1992)

    Article  ADS  Google Scholar 

  • A.S. Stern, The lunar atmosphere: history, status, current problems, and context. Rev. Geophys. 37, 453 (1999)

    Article  ADS  Google Scholar 

  • S.A. Stern, K.D. Retherford, C.C.C. Tsang, P.D. Feldman, W. Pryor, G.R. Gladstone, Lunar atmospheric helium detections by the LAMP UV spectrograph on the Lunar Reconnaissance Orbiter. Geophys. Res. Lett. 39, L12202 (2012)

    Article  ADS  Google Scholar 

  • S.A. Stern, J.C. Cook, J.-Y. Chaufray, P.D. Feldman, G.R. Gladstone, K.D. Retherford, Lunar atmospheric H2 detections by the LAMP UV spectrograph on the Lunar Reconnaissance Orbiter. Icarus 226, 1210–1213 (2013)

    Article  ADS  Google Scholar 

  • T. Stubbs, R. Vondrak, W. Farrell, A dynamic fountain model for lunar dust. Adv. Space Res. 37, 59–66 (2006)

    Article  ADS  Google Scholar 

  • A.L. Tyler, R.W.H. Kozlowski, D.M. Hunten, Observations of sodium in the tenuous lunar atmosphere. Geophys. Res. Lett. 15(10), 1141–1144 (1988)

    Article  ADS  Google Scholar 

  • J.K. Wilson, S.M. Smith, J. Baumgardner, M. Mendillo, Modeling an enhancement of the lunar sodium atmosphere and tail during the Leonid meteor shower of 1998. Geophys. Res. Lett. 26(12), 1645–1648 (1999). doi:10.1029/1999GL900313

    Article  ADS  Google Scholar 

  • J.K. Wilson, M. Mendillo, H.E. Spence, Magnetospheric influence on the Moon’s exosphere. J. Geophys. Res. 111, A07207 (2006) doi:10.1029/2005JA011364

    ADS  Google Scholar 

  • The Scientific Context for EXPLORATION of the MOON, Space Studies Board, Division on Engineering and Physical Sciences, National Research Council of the National Academies (The National Academies Press, Washington, 2007). The online version of this reference can be found here: http://www.nap.edu/openbook.php?record_id=11954

  • R.R. Vondrak, Creation of an artificial lunar atmosphere. Nature 248, 657–658 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to R. C. Elphic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elphic, R.C., Delory, G.T., Hine, B.P. et al. The Lunar Atmosphere and Dust Environment Explorer Mission. Space Sci Rev 185, 3–25 (2014). https://doi.org/10.1007/s11214-014-0113-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-014-0113-z

Keywords

Navigation