Skip to main content
Log in

On the mechanism of the formation of magnetohydrodynamic vortices in the solar plasma

  • Space Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Based on the magnetohydrodynamic (MHD) equations for an incompressible conductive viscous fluid, the possible mechanism of the formation of giant MHD vortices recently discovered in the solar atmosphere (chromosphere) is analyzed. It is assumed that these vortices arise in the regions of the solar surface (photosphere) with ascending flows of hot plasma that arrives from the inner regions of the Sun as a result of thermal convection and is accelerated upward under the action of the chromospheric plasma pressure gradient. It is shown that, under the assumption of plasma incompressibility and flow continuity, the ascending plasma flows induce converging radial plasma flows, which create the convective and Coriolis nonlinear hydrodynamic forces due to the nonzero initial vorticity of the chromospheric plasma caused by Sun’s rotation. The combined action of these two forces leads to the exponential acceleration of the solid-body rotation of plasma inside the ascending flow, thereby creating a vortex that generates an axial magnetic field, in agreement with astrophysical observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Wedermeyer-Böhm, E. Scullion, O. Steiner, L. R. van der Voort, J. de la Cruz Rodriguez, V. Fedun, and R. Erdélyi, Nature 486, 505 (2012).

    Article  ADS  Google Scholar 

  2. S. Wedermeyer-Böhm and L. R. van der Voort, Astron. Astrophys. 507 (2009).

  3. B. De Pontieu, S. W. McIntosh, M. Carlsson, V. H. Hansteen, T. D. Tarbell, C. J. Schrijver, A. M. Title, R. A. Shine, S. Tsuneta, Y. Katsukawa, K. Ichimoto, Y. Suematsu, T. Shimizu, and S. Nagata, Science 318, 1574 (2007).

    Article  ADS  Google Scholar 

  4. J. W. Cirtain, L. Golub, L. Lundquist, A. van Ballegooijen, A. Savcheva, M. Shimojo, E. DeLuca, S. Tsuneta, T. Sakao, K. Reeves, M. Weber, R. Kano, N. Narukage, and K. Shibasaki, Science 318, 1580 (2007).

    Article  ADS  Google Scholar 

  5. J. R. Lemen, A. M. Title, D. J. Akin, P. F. Boerner, C. Chou, J. F. Drake, D. W. Duncan, C. G. Edwards, F. M. Friedlaender, G. F. Heyman, N. E. Hurlburt, N. L. Katz, G. D. Kushner, M. Levay, R. W. Lindgren, D. P. Mathur, E. L. McFeaters, S. Mitchell, R. A. Rehse, C. J. Schrijver, L. A. Springer, R. A. Stern, T. D. Tarbell, J.-P. Wuelser, C. J. Wolfson, C. Yanari, J. A. Bookbinder, P. N. Cheimets, D. Caldwell, E. E. Deluca, R. Gates, L. Golub, S. Park, W. A. Podgorski, R. I. Bush, P. H. Scherrer, M. A. Gummin, P. Smith, G. Auker, P. Jerram, P. Pool, R. Soufli, D. L. Windt, S. Beardsley, M. Clapp, J. Lang, and N. Waltham, Sol. Phys. 275, 17 (2012).

    Article  ADS  Google Scholar 

  6. S. W. McIntosh, B. De Pontieu, M. Carlsson, V. Hansteen, P. Boerner, and M. Goossens, Nature 475, 477 (2011).

    Article  ADS  Google Scholar 

  7. V. Fedun, S. Shelyag, G. Verth, M. Mathioudakis, and R. Erdélyi, Ann. Geophys. 29, 1029 (2011).

    Article  ADS  Google Scholar 

  8. A. Van Ballegooijen, M. Asgari-Targhi, S. Cranmer, and E. DeLuca, Astrophys. J. 736, 3 (2011).

    Article  ADS  Google Scholar 

  9. I. Kitiashvili, A. Kosovichev, N. Mansour, and A. Wray, Astrophys. J. 727, L50 (2011).

    Article  ADS  Google Scholar 

  10. R. Attie, D. Innes, and H. Potts, Astron. Astrophys. 493, L13 (2009).

    Article  ADS  Google Scholar 

  11. S. Shelyag, P. Keys, M. Mathioudakis, and F. P. Keenan, Astron. Astrophys. 526, A5 (2011).

    Article  ADS  Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Fizmatgiz, Moscow, 1959; Pergamon, Oxford, 1960).

    Google Scholar 

  13. E. A. Pashitskii, JETP 110, 1026 (2010).

    Article  ADS  Google Scholar 

  14. L. Balmaceda, S. V. Domingues, J. Palacios, I. Cabello, and V. Domingo, Astron. Astrophys. 513 (2010).

  15. J. Zhang and Y. Liu, Astrophys. J. 741, L7 (2011).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Pashitskii.

Additional information

Original Russian Text © E.A. Pashitskii, 2014, published in Fizika Plazmy, 2014, Vol. 40, No. 10, pp. 928–936.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pashitskii, E.A. On the mechanism of the formation of magnetohydrodynamic vortices in the solar plasma. Plasma Phys. Rep. 40, 820–827 (2014). https://doi.org/10.1134/S1063780X14090074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X14090074

Keywords

Navigation