Skip to main content
Log in

Neutron Reflectometry with Detection of the Secondary Radiation: Particle–Wave Method of Determining the Nanoscale Isotope Density Distributions

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Different regimes of a neutron wave field are considered. The use of grazing neutron incidence geometry in the regime of standing waves with detection of specularly reflected neutrons and secondary radiation in the form of charged particles, gamma quanta, and scattered and spin-flip neutrons is substantiated. The new method of measurements implemented in the studies of layered structures combines the wave properties of neutron propagation and particle properties of neutrons in nuclear reactions. Some experimental data on the estimation of parameters for this method are given. The prospects in the development of neutron reflectometry and particle–wave measurements are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.

Similar content being viewed by others

REFERENCES

  1. Ch. Jeynes and J. L. Colaux, “Thin film depth profiling by ion beam analysis,” Analyst 141, 5944 (2016).

    Article  ADS  Google Scholar 

  2. K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: Introduction (Nauka, Moscow, 2006; Springer, 2003).

  3. Yu. V. Nikitenko and V. D. Zhaketov, “Magnetism in ferromagnetic-superconducting layered structures,” Phys. Part. Nucl. 53, 1089–1125 (2022).

    Article  Google Scholar 

  4. S. Mironov, A. S. Mel’nikov, and A. Buzdin, “Electromagnetic proximity effect in planar superconductor-ferromagnet structures,” Appl. Phys. Lett. 113, 022601 (2018).

    Article  ADS  Google Scholar 

  5. A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).

    Article  ADS  Google Scholar 

  6. V. L. Aksenov, Yu. V. Nikitenko, F. Radu, Yu. M. Gledenov, and P. V. Sedyshev, Physica B 276278, 946—947 (2000).

    Article  ADS  Google Scholar 

  7. V. L. Aksenov, N. A. Gundorin, Yu. V. Nikitenko, Yu. P. Popov, and L. Cher, Poverkhnost’. Rentgenovskie, Sinkhrotronnye Neitr. Issled. 6, 7–10 (2000);

    Google Scholar 

  8. V. L. Aksenov, L. Cser, N. A. Gundorin, Yu. V. Nikitenko, and Yu. P. Popov, Physica B 276278, 809 (2000).

    Article  ADS  Google Scholar 

  9. V. L. Aksenov, Yu. V. Nikitenko, S. V. Kozhevnikov, F. Radu, R. Kruis, and T. Rekveldt, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. 8, 10–15 (2000).

    Google Scholar 

  10. Yu. V. Nikitenko, A. V. Petrenko, N. A. Gundorin, Yu. M. Gledenov, and V. L. Aksenov, Crystallogr. Rep. 60, 466–479 (2015).

    Article  ADS  Google Scholar 

  11. V. D. Zhaketov, A. V. Petrenko, S. N. Vdovichev, V. V. Travkin, A. Csik, Yu. N. Kopatch, Yu. M. Gledenov, E. Sansarbayar, N. A. Gundorin, Yu. V. Nikitenko, and V. L. Aksenov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 13, 478–487 (2019).

    Article  Google Scholar 

  12. V. D. Zhaketov, K. Khramko, A. V. Petrenko, Yu. N. Khaidukov, A. Csik, Yu. N. Kopatch, N. A. Gundorin, Yu. V. Nikitenko, and V. L. Aksenov, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled. No. 6, 10–24 (2021).

    Google Scholar 

  13. V. L. Aksenov, K. N. Zhernenkov, S. V. Kozhevnikov, Kh. Lauter, V. Lauter-Pasyuk, Yu. V. Nikitenko, and A. V. Petrenko, “The polarized neutron spectrometer REMUR at the pulsed reactor IBR-2,” Report JINR-D13-2004-47 (JINR, Dubna, 2004).

  14. F. L. Shapiro, Neutron Research (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  15. F. A. Stevie and C. L. Donley, “Introduction to X-ray photoelectron spectroscopy,” J. Vac. Sci. Technol. A 38, 063204 (2020)

    Article  Google Scholar 

  16. M. Xu, D. Fujita, J. Gao, and N. Hanagata, “Auger electron spectroscopy: A rational method for determining thickness of graphene films,” ACS Nano 4–5, 2937–2945 (2010).

  17. K. Oura et al., Surface Science: An Introduction (Springer, Berlin 2003; Nauka, Moscow, 2006).

  18. H. Oechsner, R. Getto, and M. Kopnarski, “Quantitative characterization of solid state phases by secondary neutral mass spectrometry,” J. Appl. Phys. 105, 063523 (2009).

    Article  ADS  Google Scholar 

  19. K. Vad, A. Csic, and G. A. Langer, “Secondary neutral mass spectrometry—a powerful technique for quantitative elemental and depth profiling analyses of nanostructures,” Spectrosc. Eur. 21, 13 (2009).

    Google Scholar 

  20. C. Jeynes, N. P. Barradas, and E. Szilágyi, “Accurate determination of quantity of material in thin films by Rutherford backscattering spectrometry,” Anal. Chem. 84, 6061–6069 (2012).

    Article  Google Scholar 

  21. N. N. Petrov et al. (Leningrad Gos. Univ., Leningrad, 1977) [in Russian].

  22. M. Wilde and K. Fukutani, “Hydrogen detection near surface and shallow interfaces with resonant nuclear reaction analysis, Surface Sci. Rep. 69, 196–295 (2014).

    Article  ADS  Google Scholar 

  23. Ch. Wang, Y. Gong, J. Dai, L. Zhang, H. Xie, G. Pastel, B. Liu, E. Wachsman, H. Wang, and L. Hu, “In situ neutron depth profiling of lithium metal-garnet interfaces for solid state batteries,” J. Am. Chem. Soc. 139, 14257–14264 (2017).

    Article  Google Scholar 

  24. E. Vezhlev, A. Ioffe, S. Mattauch, S. Staringer, V. Ossovyi, Ch. Felder, E. Hüger, J. Vacik, I. Tomandl, V. Hnatowicz, L. Chen, P. H. Notten, and Th. Brückel, “A new neutron depth profiling spectrometer at the JCNS for a focused neutron beam,” Radiat. Eff. Defects Solids 175, 342–355 (2020).

    Article  ADS  Google Scholar 

  25. V. L. Aksenov and Yu. V. Nikitenko, Physica B 297, 101 (2001).

    Article  ADS  Google Scholar 

  26. Yu. N. Khaidukov and Yu. V. Nikitenko, Nucl. Instrum. Methods Phys. Res., Sect. A 629, 245 (2011).

    Google Scholar 

  27. Yu. V. Nikitenko, Phys. Procedia 42, 89 (2013).

    Article  ADS  Google Scholar 

  28. Yu. V. Nikitenko, V. A. Ulyanov, V. M. Pusenkov, S. V. Kozhevnikov, K. N. Jernenkov, N. K. Pleshanov, B.G. Peskov, A. V. Petrenko, V. V. Proglyado, V. G. Syromyatnikov, and A. F. Schebetov, Nucl. Instrum. Methods Phys. Res., Sect. A 564, 395 (2006).

    Google Scholar 

  29. E. B. Dokukin and Yu. V. Nikitenko, Nucl. Instrum. Methods Phys. Res., Sect. A 330, 462 (1993).

    Google Scholar 

  30. S. V. Grogoriev, A. I. Okorokov, and V. V. Runov, Nucl. Instrum. Methods Phys. Res., Sect. A 384, 451 (1997).

    Google Scholar 

  31. SwissNeutronics AG, Klingnau, Switzerland, tech@swissneutronics.ch.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Nikitenko.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksenov, V.L., Zhaketov, V.D. & Nikitenko, Y.V. Neutron Reflectometry with Detection of the Secondary Radiation: Particle–Wave Method of Determining the Nanoscale Isotope Density Distributions. Phys. Part. Nuclei 54, 756–775 (2023). https://doi.org/10.1134/S1063779623040044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779623040044

Navigation