Skip to main content
Log in

Perspectives of Strangeness Study at NICA/MPD from Realistic Monte Carlo Simulation

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Study of the strangeness production in nuclear collisions is one of the main tasks of the NICA/MPD physics program. In this paper the results of the Monte Carlo investigation of the MPD detector performance for reconstruction of \(\bar {\Lambda }\), \({{\bar {\Xi }}^{ + }}\) and \({{\bar {\Omega }}^{ + }}\) hyperons in Au + Au collisions at \(\sqrt {{{s}_{{NN}}}} = 11\) GeV are presented, demonstrating the experiment’s capabilities to extract physics observables essential for the strangeness production study at the starting period of data taking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Rafelski, “Strangeness and quark gluon plasma,” Phys. Rep. 88, 331 (1982).

    Google Scholar 

  2. J. Rafelski and B. Muller, “Strangeness production in the quark-gluon plasmas,” Phys. Rev. Lett. 48, 1066 (1982).

    Article  ADS  Google Scholar 

  3. V. D. Kekelidze, R. Lednicky, V. A. Matveev, I. N. Meshkov, A. S. Sorin, and G. V. Trubnikov, “Three stages of the NICA accelerator complex,” Eur. Phys. J. A 52, 211 (2016).

    Article  ADS  Google Scholar 

  4. http://mpd.jinr.ru.

  5. http://spd.jinr.ru.

  6. M. Ilieva, V. Kolesnikov, D. Suvarieva, V. Vasendina, and A. Zinchenko, “Evaluation of the MPD detector capabilities for the study of the strangeness production at the NICA collider,” Phys. Part. Nucl. Lett. 12, 100 (2015).

    Article  Google Scholar 

  7. M. Ilieva, V. Kolesnikov, D. Suvarieva, V. Vasendina, and A. Zinchenko, “Reconstruction of multistrange hyperons with the MPD detector at the NICA collider: A Monte Carlo feasibility study,” Phys. Part. Nucl. Lett. 12, 618 (2015).

    Article  Google Scholar 

  8. V. Kolesnikov, A. Mudrokh, V. Vasendina, and A. Zinchenko, “Towards a realistic Monte Carlo simulation of the MPD detector at NICA,” Phys. Part. Nucl. Lett. 16, 6 (2019).

    Article  Google Scholar 

  9. R. Fruhwirth, “Application of Kalman filtering to track and vertex fitting,” Nucl. Instr. Methods Phys. Res., Sect. A 262 444 (1987).

    Google Scholar 

  10. R. Luchsinger and Ch. Grab, “Vertex reconstruction by means of the method of Kalman filter,” Comp. Phys. Comm. 76 263 (1993).

    Article  ADS  Google Scholar 

  11. K. Gertsenberger, S. Mets, O. Rogachevsky, and A. Zinchenko, “Simulation and analysis software for the NICA experiments,” Eur. Phys. J. A 52, 214 (2016).

    Article  ADS  Google Scholar 

  12. ALICE Collab., “Particle identification in ALICE: A Bayesian approach,” Eur. Phys. J. Plus 131, 168 (2016); https://arxiv.org/abs/1602.01392.

    Article  Google Scholar 

  13. W. Cassing and E. Bratkovskaya, “Parton-hadron-string dynamics: An off-shell transport approach for relativistic energies”, Nucl. Phys. A 831, 215 (2009).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-02-40060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Drnoyan.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drnoyan, J., Kolesnikov, V., Mudrokh, A. et al. Perspectives of Strangeness Study at NICA/MPD from Realistic Monte Carlo Simulation. Phys. Part. Nuclei 53, 203–206 (2022). https://doi.org/10.1134/S1063779622020307

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779622020307

Navigation