Skip to main content
Log in

Hyperons from Bi + Bi Collisions at MPD-NICA: Preliminary Analysis of Production at Generation, Simulation and Reconstruction Level

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

An important observable to understand the properties of the matter produced in heavy-ion collisions is its strangeness content. Recent experimental results show that in semi-central collisions, the Λ and \(\bar {\Lambda }\) global polarization show differences that increase at low energies. This behaviour has been described using a model where these particles may be produced from two distinct density zones in the collision region: the core and the corona where QGP processes and p + p like reactions, respectively, are mainly at work. Using this idea, the polarization can be influenced by the relative abundance of these particles coming from either regions. In this work we show how to test this model in the MPD experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. F. Becattini, F. Piccinini, and J. Rizzo, “Angular momentum conservation in heavy ion collisions at very high energy,” Phys. Rev. C 77, 024906 (2008); arXiv: 0711.1253 [nucl-th]

    ADS  Google Scholar 

  2. F. Becattini, I. Karpenko, M. Lisa, I. Upsal, and S. Voloshin, “Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down,” Phys. Rev. C 95, 054902 (2017); arXiv: 1610.02506

  3. S. Acharya et al. (ALICE Collab.), “Global polarization of Λ\(\bar {\Lambda }\) hyperons in Pb–Pb collisions at \(\mathop {\sqrt s }\nolimits_{NN} = \) 2.76 and 5.02 TeV,” Phys. Rev. C 101, 044611 (2020); arXiv:1909.01281

  4. L. Adamczyk et al. [STAR Collab.), “Global Λ hyperon polarization in nuclear collisions: Evidence for the most vortical fluid,” Nature 548, 62–65 (2017); arXiv: 1701.06657

  5. J. Adam et al. (STAR Collab.), “Global polarization of Λ hyperons in Au + Au Collisions at \(\mathop {\sqrt s }\nolimits_{NN} = \) 200 GeV,” Phys. Rev. C 98, 014910 (2018); arXiv:1805.04400

  6. A. Ayala et al., “Core meets corona: A two-component source to explain Lambda and anti-Lambda global polarization in semi-central heavy-ion collisions,” Phys. Lett. B 810, 135818 (2020); arXiv:2003.13757

  7. A. Ayala, E. Cuautle, I. Domínguez, I. Maldonado, J. Salinas, and M. Tejeda-Yeomans, “Two-component source to explain Λ and \(\bar {\Lambda }\) global polarization in non-central heavy-ion collisions,” J. Phys. Conf. Ser. 1602, 012032 (2020); arXiv:2006.10015

  8. A. Ayala, E. Cuautle, G. Herrera, and L. M. Montano, “Λ0 polarization as a probe for production of deconfined matter in ultrarelativistic heavy-ion collisions,” Phys. Rev. C 65, 024902 (2002); arXiv:nucl-th/0110027

    Article  ADS  Google Scholar 

  9. A. Ayala, D. de la Cruz, L. Hernández, and J. Salinas, “Relaxation time for the alignment between the spin of a finite-mass quark or antiquark and the thermal vorticity in relativistic heavy-ion collisions,” Phys. Rev. D 102, 056019 (2020); arXiv:2003.06545

  10. A. Ayala, D. de la Cruz, S. Hernández-Ortíz, L. Hernández, and J. Salinas, “Relaxation time for quark spin and thermal vorticity alignment in heavy-ion collisions,” Phys. Lett. B 801, 135169 (2020); arXiv: 1909.00274

  11. K. Abraamyan et al., “The MPD detector at the NICA heavy-ion collider at JINR,” Nucl. Instrum. Methods Phys. Res., Sect. A 628, 99–102 (2011).

    Google Scholar 

  12. V. Golovatyuk, V. Kekelidze, V. Kolesnikov, O. Rogachevsky, and A. Sorin, “The multi-purpose detector (MPD) of the collider experiment,” Eur. Phys. J. A 52, 212 (2016).

    Article  ADS  Google Scholar 

  13. M. Tanabashi et al. (Particle Data Group Collab.), “Review of particle physics,” Phys. Rev. D 98, 030001 (2018).

    Article  ADS  Google Scholar 

  14. A. Averyanov et al., “TPC status for MPD experiment of NICA project,” JINST 12 (06), C06047 (2017).

  15. J. Podolanski and R. Armenteros III, “Analysis of V‑events,” London Edinburgh Dublin Philos. Mag. J. Sci. 45 (360), 13–30 (1954).

    Article  Google Scholar 

  16. B. Abelev et al. (STAR Collab.), “Global polarization measurement in Au+Au collisions,” Phys. Rev. C 76, 024915 (2007). Erratum: B. Abelev et al. (STAR Collab.), Phys. Rev. C 95, 039906 (2017); arXiv:0705.1691 [nucl-ex] (2017).

  17. M. Baznat, A. Botvina, G. Musulmanbekov, V. Toneev, and V. Zhezher, “Monte-Carlo generator of heavy ion collisions DCM-SMM,” Phys. Part. Nucl. Lett. 17 (3), 303–324 (2020); arXiv:1912.09277.

Download references

ACKNOWLEDGMENTS

I.M. thanks the ICN-UNAM faculty and staff for the support and kind hospitality provided during the development of part of this work. Support for this work has been received in part by UNAM-DGAPA-PAPIIT grant number IG100219 and by Consejo Nacional de Ciencia y Tecnología grant numbers A1-S-7655 and A1-S-16215.

Funding

I.M. acknowledges support from a postdoctoral fellowship granted by Consejo Nacional de Ciencia y Tecnología.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Maldonado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayala, A., Cuautle, E., Domínguez, I. et al. Hyperons from Bi + Bi Collisions at MPD-NICA: Preliminary Analysis of Production at Generation, Simulation and Reconstruction Level. Phys. Part. Nuclei 52, 730–736 (2021). https://doi.org/10.1134/S1063779621040092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779621040092

Navigation