Skip to main content
Log in

The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The year 2016 marks the 60th anniversary of the Joint Institute for Nuclear Research (JINR) in Dubna, an international intergovernmental organization for basic research in the fields of elementary particles, atomic nuclei, and condensed matter. Highly productive advances over this long road clearly show that the international basis and diversity of research guarantees successful development (and maintenance) of fundamental science. This is especially important for experimental research. In this review, the most significant achievements are briefly described with an attempt to look into the future (seven to ten years ahead) and show the role of JINR in solution of highly important problems in elementary particle physics, which is a fundamental field of modern natural sciences. This glimpse of the future is full of justified optimism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. P. Dzhelepov, “When there was no Dubna on the map,” in Proceedings of the International Symposium ISAP–96 “Science and Society: History of the Soviet Atomic Project (1940–1950s,” Dubna, Russia, 1996 (IzdAT, Moscow, 1997), Vol. 1, pp. 284–290 [in Russian].

    Google Scholar 

  2. G. V. Kiselev, Yu. A. Batusov, N. S. Kavalerova, E. M. Molchanov, and B. M. Starchenko, History of the JINR Synchrocyclotron (Documents and Memoirs). Ed. by N. A. Russakovich (JINR, Dubna, 2014) [in Russian].

    Google Scholar 

  3. V. A. Bednyakov, N. A. Russakovich, and A. A. Tyapkin, “Dzhelepov Laboratory of Nuclear Problems at the turn of the millennia,” Phys. Part. Nucl. 33, 259–290 (2002).

    Google Scholar 

  4. M. G. Shafranova, Joint Institute for Nuclear Research: Information and Biographies (JINR, 97–157, Dubna, 1998) [in Russian].

    Google Scholar 

  5. B. M. Starchenko, Yu. G. Shimanskaya, and I. Yu. Shcherbakova, History of JINR in Decisions of the Central Committee of the CPSU, 1955–1958 (JINR, 2014-105, Dubna, 2015) [in Russian].

    Google Scholar 

  6. V. G. Kadyshevskii, “Forty years of the Joints Institute for Nuclear Research,” Phys. Usp. 39, 863–868 (1996).

    Article  ADS  Google Scholar 

  7. V. G. Kadyshevskii and A. N. Sissakian, “The Joint Institute for Nuclear Research—the first half-century,” Phys. Usp. 49, 297–304 (2006).

    Article  ADS  Google Scholar 

  8. V. G. Kadyshevskii, A. N. Sissakian, and Ts. Vylov, Dubna, an Island of Stability: Essays on the History of the Joint Institute for Nuclear Research. 1956–2006 (Akademkniga, Moscow, 2006) [in Russian].

    Google Scholar 

  9. Yu. A. Batusov, V. A. Bednyakov, Yu. N. Denisov, P. S. Isaev, M. G. Loshchilov, N. A. Russakovich, N. I. Sissakian, and B. M. Starchenko, Fifty-Five Years to the Joint Institute for Nuclear Research (JINR, 2011-23, Dubna, 2011) [in Russian].

    Google Scholar 

  10. V. A. Matveev, “JINR: The initiator of future discoveries,” Phys. Usp. 59, 217–224 (2016).

    Article  ADS  Google Scholar 

  11. A. Sissakian, M. Itkis, and R. Lednicky, Seven-Year Plan for the Development of JINR 2010-2016 (JINR, Dubna, 2009).

    Google Scholar 

  12. Science Bringing Nations Together, JINR–CERN Exhibition Moscow, Russia, 2001.

  13. G. Mikenberg, “Particle physics as a way to bring different cultures to work together in science,” Prog. Theor. Exp. Phys. 2016 (10), 102C01 (2016); http://www.arXiv.org/abs/1608.06119.

    Article  Google Scholar 

  14. 60Years of CERN Experiments and Discoveries, Ed. by H. Schopper and L. Di Lella, Adv. Ser. Dir. High Energy Phys. 23, 23 (2015).

  15. R.-D. Heuer, “CERN and 60Years of Science for Peace,” AIP Conf. Proc. 1645, 430–436 (2015).

    Article  ADS  Google Scholar 

  16. B. Pontecorvo, “Elementary particle physics is expensive: Is it necessary?” Sov. Phys. Usp. 8, 617–618 (1966).

    Article  ADS  Google Scholar 

  17. J. Butterworth, “The Standard Model: How far can it go and how can we tell?” Philos. Trans. R. Soc. A, London 374, 20150260 (2016); arXiv:1601.02759.

    Article  ADS  Google Scholar 

  18. P. J. Mulders, “The roots of the Standard Model of particle physics.” http://www.arXiv.org/abs/1601.00300.

  19. V. A. Bednyakov, N. D. Giokaris, and A. V. Bednyakov, “On the Higgs mass generation mechanism in the Standard Model,” Phys. Part. Nucl. 39, 13–36 (2008).

    Article  Google Scholar 

  20. D. I. Kazakov, “Landscape view at the edge of a mystery,” Proc. 3d Large Hadron Collider Physics Conf. (LHCP 2015), August 31–September 5, St. Petersburg, Russia, 2015; http://www.arXiv.org/abs/1511.09283.

    Google Scholar 

  21. G. Sterman, “Yang–Mills theories at high energy accelerators,” In. J. Mod. Phys. A 31, 1630005 (2016); http://www.arXiv.org/abs/1602.02307.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. G. Altarelli, “The Higgs and the excessive success of the Standard Model,” Frascati Phys. Ser. 58, 102 (2014); http://www.arXiv.org/abs/1407.2122.

    Google Scholar 

  23. G. Aad et al. (ATLAS Collab.), “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC,” Phys. Lett. B 716, 1–29 (2012); http://www.arXiv.org/abs/1207.7214.

    Article  ADS  Google Scholar 

  24. S. Chatrchyan et al. (CMS Collab.), “Observation of a new boson at a mass of 125GeV with the CMS experiment at the LHC,” Phys. Lett. B 716, 30–61 (2012); http://www.arXiv.org/abs/1207.7235.

    Article  ADS  Google Scholar 

  25. J. Ellis, “Summary and outlook: 2015 Lepton-Photon Symposium,” in PoS LeptonPhoton 2015, 054 (2016); http://www.arXiv.org/abs/1509.07336.

    Google Scholar 

  26. J. Ellis, “The physics landscape after the Higgs discovery at the LHC,” Nucl. Part. Phys. Proc. 267–269, 3–14 (2015); http://www.arXiv.org/abs/1504.03654.

    Article  Google Scholar 

  27. A. Pich, “ICHEP 2014 summary: Theory status after the first LHC run,” Nucl. Part. Phys. Proc. 273–275, 1–10 (2016); http://www.arXiv.org/abs/1505.01813.

    Google Scholar 

  28. A. Pich, “Status after the first LHC run: Looking for new directions in the physics landscape,” Nucl. Instrum. Methods Phys. Res., Sect. A, 824. 43–46 (2016); http://www.arXiv.org/abs/1507.01250.

    Article  ADS  Google Scholar 

  29. G. P. Salam, “Summary of the XXVII Rencontres de Blois: Particle Physics and Cosmology,” Blois, France; http://www.arXiv.org/abs/1509.07666.

  30. M. Ibe, A. Kusenko, and T. T. Yanagida, “Why three generations?” Phys. Lett. B 758, 365–369 (2016); http://www.arXiv.org/abs/1602.03003.

    Article  ADS  Google Scholar 

  31. A. V. Bednyakov, B. A. Kniehl, A. F. Pikelner, and O. L. Veretin, “Stability of the electroweak vacuum: Gauge independence and advanced precision,” Phys. Rev. Lett. 115, 1–5 (2015); http://www.arXiv.org/abs/1507.08833.

    Article  Google Scholar 

  32. L. Willmann and K. Jungmann, “Matter-antimatter asymmetry—aspects at low energy,” Ann. Phys. 528, 108–114 (2016); http://www.arXiv.org/abs/1506.03001.

    Article  MathSciNet  Google Scholar 

  33. S. Forte, A. Nisati, G. Passarino, R. Tenchini, C. M. C. Calame, M. Chiesa, M. Cobal, G. Corcella, G. Degrassi, G. Ferrera, L. Magnea, F. Maltoni, G. Montagna, P. Nason, O. Nicrosini, C. Oleari, F. Piccinini, F. Riva, and A. Vicini, “The Standard Model from LHC to future colliders,” Eur. Phys. J. C 75, 1–45 (2015); http://www.arXiv.org/abs/1505.01279.

    Article  ADS  Google Scholar 

  34. P. Jenni, Update of the European Strategy for Particle Physics //in Proceedings of the 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy, 2013, (ARSF, 2013), pp. 413–418.

    Google Scholar 

  35. M. Krammer, “The update of the European strategy for particle physics,” Phys. Scr. T158, 014019 (2013).

  36. R. Aleksan et al. (European Strategy for Particle Physics Preparatory Group Collab.), Physics Briefing Book: Input for the Strategy Group to draft the update of the European Strategy for Particle Physics, CERN-ESG-005 (CERN, Geneva, 2013).

    Google Scholar 

  37. S. Ritz et al. (HEPAP Subcommittee Collab.), “Building for Discovery: Strategic Plan for U.S. Particle Physics in the Global Context” P5 Report (FNAL, 2014).

    Google Scholar 

  38. S. Asai et al., “The final report of the subcommittee on future projects of high energy physics,” J-PARC report, (KEK, 2012).

    Google Scholar 

  39. S. Troitsky, “Unsolved problems in particle physics,” //Phys. Usp. 55, 72–95 (2012); http://www.arXiv.org/abs/1112.4515.

    Article  ADS  Google Scholar 

  40. F. Wilczek, “Theory Vision, LHCP 2016,” in Proceedings of the LHCP Conference, Lund, June 2016; http://www.arXiv.org/abs/1609.06941.

    Google Scholar 

  41. C. Csaki, C. Grojean, and J. Terning, ” Alternatives to an elementary Higgs,” Rev. Mod. Phys. 88, 045001 (2016); http://www.arXiv.org/abs/1512.00468.

    Article  ADS  MathSciNet  Google Scholar 

  42. A. Djouadi, “Higgs Physics,” in PoS CORFU 2014, 018 (2015); http://www.arXiv.org/abs/1505.01059.

    Google Scholar 

  43. M. Kramer and M. Muhlleitner, “Higgs physics,” Nucl. Part. Phys. Proc. 261–262, 246–267 (2015); http://www.arXiv.org/abs/1501.06658.

    Article  Google Scholar 

  44. C. Quigg, “Particle physics after the Higgs-boson discovery: opportunities for the Large Hadron Collider,” Contemp. Phys. 57, 177–187 (2016); http://www.arXiv. org/abs/1507.02977.

    Article  ADS  Google Scholar 

  45. G. Moortgat-Pick et al., “Physics at the linear collider,” Eur. Phys. J. C 75, 371 (2015); http://www.arXiv.org/abs/1504.01726.

    Article  ADS  Google Scholar 

  46. K. Fujii et al., “Physics case for the International Linear Collider.” http://www.arXiv.org/abs/1506.05992.

  47. F. Sefkow, “The Higgs physics programme at the International Linear Collider,” in Proc. 20th International Conf. Part. Nucl. (PANIC 14), Hamburg, Germany, August 24-29, 2014 (DESY, Hamburg, 2015), pp. 483–487.http://www.arXiv.org/abs/1410.3246.

    Google Scholar 

  48. J. Strube, “The Higgs physics program at the International Linear Collider.” http://www.arXiv.org/abs/1511.00286.

  49. M. Spannowsky and M. Stoll, “Tracking new physics at the LHC and beyond,” Phys. Rev. D 92, 054033 (2015); http://www.arXiv.org/abs/1505.01921.

    Article  ADS  Google Scholar 

  50. B. Gripaios, “Lectures on physics beyond the Standard Model,” http://www.arXiv.org/abs/1503.02636.

  51. J. Ellis, “Prospects for supersymmetry at the LHC & beyond,” in PoS PLANCK 2015, 041 (2015); http://www.arXiv.org/abs/1510.06204.

    Google Scholar 

  52. P. Nath, “Supersymmetry after the Higgs,” Ann. Phys. (2015); http://www.arXiv.org/abs/1501.01671501.0167.

    Google Scholar 

  53. X. Tata, “Supersymmetry: Aspirations and prospects,” Phys. Scr. 90, 108001 (2015); http://www.arXiv.org/abs/1506.07151.

    Article  ADS  Google Scholar 

  54. P. Bechtle, T. Plehn, and C. Sander, “Supersymmetry,” http://www.arXiv.org/abs/1506.03091.

  55. K. A. Ulmer (ATLAS, CMS Collab.), “Supersymmetry: Experimental status,” in Proc. of the 3rd Large Hadron Collider Phys. Conf. (LHCP 2015) St. Petersburg, Russia, August 31–September 5, 2015 (2016); http://www.arXiv.org/abs/1601.03774.

    Google Scholar 

  56. A. Cakir (ATLAS, CMS Collab.), “Prospects of new physics searches using high lumi—LHC,” in Next steps in the Energy Frontier -Hadron Colliders (NSEFHC14) Batavia, IL, USA, August 25-28, 2014. http://www.arXiv.org/abs/1412.8503.

    Google Scholar 

  57. F. Lyonnet, “Intrinsic bottom and its impact on heavy new physics at the LHC,” EPJ Web Conf. 112, 03005 (2016); http://www.arXiv.org/abs/1601.02856.

    Article  Google Scholar 

  58. E. Boos, O. Brandt, D. Denisov, S. Denisov, and P. Grannis, “The top quark (20 years after its discovery),” Phys. Usp. 58, 1133–1158 (2015), http://www.arXiv.org/abs/1509.03325.

    Article  ADS  Google Scholar 

  59. K. Kröniger, A. B. Meyer, and P. Uwer, “Top-quark physics at the LHC,” in The Large Hadron Collider: Harvest of Run 1, Ed. by T. Schorner-Sadenius (2015), pp. 259–300; http://www.arXiv.org/abs/1506.02800.

    Chapter  Google Scholar 

  60. S. Westhoff, “LHC prospects for asymmetric topantitop production,” in PoS FFP14, 129 (2016); http://www.arXiv.org/abs/1501.07477. e+e−

  61. P. Nason, “Theory Summary,” in PoS TOP2015, 056 (2016), http://www.arXiv.org/abs/1602.00443.

  62. A. Aguilar-Arevalo and W. Bietenholz, “Neutrinos: Mysterious particles with fascinating features, which led to the Physics Nobel Prize 2015.” http://www.arXiv.org/abs/1601.04747.

  63. R. Acciarri et al. (DUNE Collab.), “Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE).” http://www.arXiv.org/abs/1601.05471.

  64. A. Yu. Smirnov, “Riddle of the neutrino mass,” Nucl. Part. Phys. Proc. 265–266, 1–6 (2015); http://www.arXiv.org/abs/1502.04530.

    Google Scholar 

  65. X. Qian and P. Vogel, “Neutrino mass hierarchy,” Prog. Part. Nucl. Phys. 83, 1–30 (2015), http://www.arXiv.org/abs/1505.01891.

    Article  ADS  Google Scholar 

  66. L. Stanco, “A view of neutrino studies with the next generation facilities,” Rev. Phys. 1, 90–100 (2016), http://www.arXiv.org/abs/1511.09409.

    Article  Google Scholar 

  67. P. A. N. Machado, “Learning about the CP phase in the next 10 years,” Nucl. Part. Phys. Proc. 265–266, 174–176 (2015), http://www.arXiv.org/abs/1503.03775.

    Article  Google Scholar 

  68. R. B. Patterson, “Prospects for measurement of the neutrino mass hierarchy,” Ann. Rev. Nucl. Part. Sci. 65, 177–192 (2015); http://www.arXiv.org/abs/1506.07917.

    Article  ADS  Google Scholar 

  69. C. Giunti, “Light sterile neutrinos: Status and perspectives,” Nucl. Phys. B 908, 336–353 (2016); http://www.arXiv.org/abs/1512.04758.

    Article  ADS  Google Scholar 

  70. J. J. Gomez-Cadenas and J. Martin-Albo, “Phenomenology of neutrinoless double beta decay,” in PoS GSSI14, 004 (2015); http://www.arXiv.org/abs/1502.00581.

  71. C. Giunti, K. A. Kouzakov, Y.-F. Li, A. V. Lokhov, A. I. Studenikin, and S. Zhou, “Electromagnetic neutrinos in laboratory experiments and astrophysics,” Ann. Phys. 528, 198–215 (2016); http://www.arXiv.org/abs/1506.05387.

    Article  MathSciNet  MATH  Google Scholar 

  72. C. Giunti and A. Studenikin, “Neutrino electromagnetic interactions: A window to new physics,” Rev. Mod. Phys. 87, 531–591 (2015), http://www.arXiv.org/abs/1403.6344.

    Article  ADS  MathSciNet  Google Scholar 

  73. U. Mosel, “Neutrino interactions with nucleons and nuclei: Importance for long-baseline experiments,” Ann. Rev. Nucl. Part. Sci. 66, 171–195 (2016); http://www.arXiv.org/abs/1602.00696.

    Article  ADS  Google Scholar 

  74. D. A. Harris, “The state of the art of neutrino cross section measurements,” in Proceedings of the Topical Research Meeting on Prospects in Neutrino Physics (NuPhys2014): London, UK, December 15-17, 2014 (2015); http://www.arXiv.org/abs/1506.02748.

    Google Scholar 

  75. J. A. Formaggio and G. P. Zeller, “From eV to EeV: Neutrino cross sections across energy scales,” Rev. Mod. Phys. 84, 1307 (2012); http://www.arXiv.org/abs/1305.7513.

    Article  ADS  Google Scholar 

  76. D. V. Naumov, “Introduction to neutrino physics,” Phys. Part. Nucl. Lett. 8, 717–742 (2011).

    Article  Google Scholar 

  77. V. A. Bednyakov, “Neutrino physics and astrophysics at Joint Institute for Nuclear Research,” Nucl. Phys. Proc. Suppl. 245, 33–40 (2013).

    Article  ADS  Google Scholar 

  78. T. Strauss, “Neutrinos: The big question and physics opportunities,” in PoS FRAPWS2014, 003 (2015); http://www.arXiv.org/abs/1503.05866.

  79. M. Drewes, “Heavy neutrinos in particle physics and cosmology,” in PoS EPS-HEP2015, 075 (2015); http://www.arXiv.org/abs/1510.07883.

  80. C. Volpe, “Neutrino astrophysics: Recent advances and open issues,” J. Phys. Conf. Ser. 631, 012048 (2015); http://www.arXiv.org/abs/1503.01355.

    Article  Google Scholar 

  81. M. Maltoni and A. Yu. Smirnov, “Solar neutrinos and neutrino physics,” http://www.arXiv.org/abs/1507.05287.

  82. R. Aloisio, “Neutrinos at extreme energies,” J. Phys. Conf. Ser. 718, 052001 (2016); http://www.arXiv.org/abs/1601.04867.

    Article  Google Scholar 

  83. E. Fischbach and J. T. Gruenwald, “NU-SETI: A proposal to detect extra-terrestrial signals carried by neutrinos.” http://www.arXiv.org/abs/1702.03341.

  84. A. Ringwald, “How to detect big bang relic neutrinos?” in Proceedings of the Eleventh International Workshop on Neutrino Telescopes, Venezia, February 22–25, 2005 (2005), pp. 473–491; http://www.arXiv.org/abs/hep-ph/0505024.

    Google Scholar 

  85. A. Faessler, R. Hodak, S. Kovalenko, and F. Simkovic, “Can one measure the cosmic neutrino background?,” Int. J. Mod. Phys. E 26, 1740008 (2017); http://www.arXiv.org/abs/1602.03347.

    Article  ADS  MATH  Google Scholar 

  86. E. W. Kolb and M. S. Turner, “The Early Universe,” Front. Phys 69, 1–547 (1990).

    ADS  MathSciNet  MATH  Google Scholar 

  87. V. A. Rubakov, “Cosmology,” in Proc. 2011 European School of High-Energy Phys. (ESHEP 2011): Cheile Gradistei, Romania, September 7–20, 2011 (2014), pp. 151–195; http://www.arXiv.org/abs/1504.03587.

    Google Scholar 

  88. D. S. Gorbunov, “Sterile neutrinos and their role in particle physics and cosmology,” Phys. Usp. 57, 503–511 (2014).

    Article  ADS  Google Scholar 

  89. M. Fukugita and T. Yanagida, “Baryogenesis without grand unification,” Phys. Lett. B 174, 45–47 (1986).

    Article  ADS  Google Scholar 

  90. V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, “On the anomalous electroweak baryon number nonconservation in the early universe,” Phys. Lett. B 155, 36 (1985).

    Article  ADS  Google Scholar 

  91. F. F. Deppisch, P. S. Dev Bhupal, and A. Pilaftsis, “Neutrinos and collider physics,” New J. Phys. 17, 075019 (2015); http://www.arXiv.org/abs/1502.0654.

    Article  ADS  Google Scholar 

  92. J. C. Helo, S. G. Kovalenko, and M. Hirsch, “Heavy neutrino searches at the LHC with displaced vertices,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 89, 073005 (2014); http://www.arXiv.org/abs/1312.2900.

    Article  Google Scholar 

  93. A. Abada, “Neutrino physics, lepton flavour violation and the LHC,” in Proc. 25th Rencontres de Blois on Particle Physics and Cosmology, Blois, France, May 26–31, 2013; http://www.arXiv.org/abs/1310.3800.

    Google Scholar 

  94. C. Rott, A. Taketa, and D. Bose, “Spectrometry of the Earth using neutrino oscillations,” Sci. Rep. 5, 15225 (2015); http://www.arXiv.org/abs/1502.04930.

    Article  ADS  Google Scholar 

  95. P. Vogel, L. J. Wen, and C. Zhang, “Neutrino oscillation studies with reactors,” Nat. Commun. 6, 6935 (2015); http://www.arXiv.org/abs/1503.01059.

    Article  ADS  Google Scholar 

  96. C. Adams et al., “The intermediate neutrino program,” in Proc. of the Workshop on the Intermediate Neutrino Program (WINP 2015), Upton, NY, USA, February 4–6, 2015; http://www.arXiv.org/abs/1503.06637.

    Google Scholar 

  97. N. S. Bowden, K. M. Heeger, P. Huber, C. Mariani, and R. B. Vogelaar, “Applied antineutrino physics 2015—conference summary.” http://www.arXiv.org/abs/1602.04759.

  98. M. Agostini et al., “Spectroscopy of geoneutrinos from 2056 days of Borexino data,” Phys. Rev. D: Part., Fields, Gravitation, Cosmol. 92, 031101(R) (2015); http://www.arXiv.org/abs/1506.04610.

    Article  Google Scholar 

  99. G. Bellini et al. (Borexino Collab.), “Observation of geo-neutrinos,” Phys. Lett. B 687, 299–304 (2010); http://www.arXiv.org/abs/1003.0284.

    Article  ADS  Google Scholar 

  100. G. Fiorentini, M. Lissia, and F. Mantovani, “Geoneutrinos and Earth’s interior,” Phys. Rep. 453,117–172 (2007); http://www.arXiv.org/abs/0707.3203.

    Article  ADS  Google Scholar 

  101. M. Chavez-Estrada and A. A. Aguilar-Arevalo, “Antineutrino flux from the Laguna Verde nuclear power plant,” Adv. High Energy Phys. 2015, 1–7 (2015); http://www.arXiv.org/abs/1508.05069.

    Article  Google Scholar 

  102. I. Alekseev et al., “DANSSino: A pilot version of the DANSS neutrino detector,” Phys. Part. Nucl. Lett. 11, 473–482(2014); http://www.arXiv.org/abs/1305.3350.

    Article  Google Scholar 

  103. D. D. Stancil et al., “Demonstration of communication using neutrinos,” Mod. Phys. Lett. A, 10 (2012); http://www.arXiv.org/abs/1203.2847.

  104. R. Alonso, M. B. Gavela, D. Hernandez, L. Merlo, and S. Rigolin, “Neutrino and charged lepton flavour today,” in Proc. 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories: La Thuile, Italy, March 2-9, 2013 (2013) pp. 181–192; http://www.arXiv.org/abs/1311.1724.

    Google Scholar 

  105. F. Zwicky, “The redshift of extragalactic nebulae,” Helv. Phys. Acta 6, 110–127 (1933).

    ADS  MATH  Google Scholar 

  106. N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, and N. Weiner, “A theory of dark matter,” Phys. Rev. D 79, 015014 (2009); http://www.arXiv.org/abs/0810.0713.

    Article  ADS  Google Scholar 

  107. G. B. Gelmini, TASI 2014 Lectures: The hunt for dark matter. http://www.arXiv.org/abs/1502.01320.

  108. G. Bertone and D. Hooper, A History of Dark Matter //Submitted to Rev. Mod. Phys. 2016; http://www.arXiv.org/abs/1605.04909.

    Google Scholar 

  109. Y. Sofue, M. Honma, and T. Omodaka, “Unified rotation curve of the galaxy—decomposition into de Vaucouleurs bulge, disk, dark halo, and the 9-kpc rotation dip,” Publ. Astron. Soc. Jap. 61, 227 (2009); http://www.arXiv.org/abs/0811.0859.

    Article  ADS  Google Scholar 

  110. R. Massey et al., “Dark matter maps reveal cosmic scaffolding,” Nature 445, 286 (2007); http://www.arXiv.org/abs/astro-ph/0701594.

    Article  ADS  Google Scholar 

  111. B. Famaey, “Dark matter in the Milky Way,” http://www.arXiv.org/abs/1501.01788.

  112. M. Kuhlen, M. Vogelsberger, and R. Angulo, “Numerical simulations of the dark universe: State of the art and the next decade,” Phys. Dark Univ. 1, 50–93 (2012); http://www.arXiv.org/abs/1209.5745.

    Article  Google Scholar 

  113. M. A. Deliyergiyev, “Recent progress in search for dark sector signatures,” Open Phys. 14, 281–303 (2016); http://www.arXiv.org/abs/1510.06927.

    Article  Google Scholar 

  114. C. F. McKee, A. Parravano, and D. J. Hollenbach, “Stars, gas, and dark matter in the solar neighborhood,” Astrophys. J. 814, 13 (2015); http://www.arXiv.org/abs/1509.05334.

    Article  ADS  Google Scholar 

  115. V. A. Bednyakov, “Is it possible to discover a dark matter particle with an accelerator?” Phys. Part. Nucl. 47, 711–774 (2016); http://www.arXiv.org/abs/1505.04380.

    Article  Google Scholar 

  116. J. H. Davis, “The past and future of light dark matter direct detection,” Int. J. Mod. Phys. A 30, 1530038 (2015); http://www.arXiv.org/abs/1506.03924.

    Article  ADS  Google Scholar 

  117. G. Bertone, D. Hooper, and J. Silk, “Particle dark matter: Evidence, candidates and constraints,” Phys. Rep. 405, 279–390 (2005); http://www.arXiv.org/abs/hepph/0404175.

    Article  ADS  Google Scholar 

  118. I. Laszlo, R. Bean, D. Kirk, and S. Bridle, “Disentangling dark energy and cosmic tests of gravity from weak lensing systematics,” Mon. Not. R. Astron. Soc. 423, 1750 (2012); http://www.arXiv.org/abs/1109.4535.

    Article  ADS  Google Scholar 

  119. M. Lubini, C. Tortora, J. Naf, P. Jetzer, and S. Capozziello, “Probing the dark matter issue in f(R)-gravity via gravitational lensing,” Eur. Phys. J. C 71, 1834 (2011); http://www.arXiv.org/abs/1104.2851.

    Article  ADS  Google Scholar 

  120. A. Heavens, “Weak lensing: Dark matter, dark energy and dark gravity,” Nucl. Phys. Proc. Suppl. 194, 76–81 (2009); http://www.arXiv.org/abs/0911.0350.

    Article  ADS  Google Scholar 

  121. M. Roos, “Astrophysical and cosmological probes of dark matter,” J. Mod. Phys. 3, 1152 (2012); http://www.arXiv.org/abs/1208.3662.

    Article  Google Scholar 

  122. E. V. Linder, “Theory challenges of the accelerating Universe,” J. Phys. A: Math. Theor. 40, 6697–6705 (2007); http://www.arXiv.org/abs/0610173.

    Article  ADS  MATH  Google Scholar 

  123. A. Joyce, L. Lombriser, and F. Schmidt, “Dark energy versus modified gravity,” Ann. Rev. Nucl. Part. Sci. 66, 95–122 (2016); http://www.arXiv.org/abs/1601.06133.

    Article  ADS  Google Scholar 

  124. T. Abbott et al. (DES Collab.), “The Dark energy survey: More than dark energy—an overview,” Mon. Not. R. Astron. Soc. 460, 1270–1299 (2016); http://www.arXiv.org/abs/1601.00329.

    Article  ADS  Google Scholar 

  125. C. H. Gibson, N. C. Wickramasinghe, and R. E. Schild, “Primordial planets explain interstellar dust, the formation of life; and falsify dark energy,” J. Cosmol. 16, 7112 (2011); http://www.arXiv.org/abs/1112.3630.

    ADS  Google Scholar 

  126. C. H. Gibson and R. E. Schild, “Is dark energy falsifiable?,” J. Cosmol. 17, 7345 (2011); http://www.arXiv.org/abs/1112.2758.

    ADS  Google Scholar 

  127. V. Bednyakov and H. Klapdor-Kleingrothaus, “Direct search for dark matter–striking the balance–and the future,” Phys. Part. Nucl. 40, 583–611 (2009); http://www.arXiv.org/abs/0806.3917.

    Article  Google Scholar 

  128. K. A. Olive et al. (Particle Data Group Collab.), “Review of particle physics,” Chin. Phys. C 38, 090001 (2014).

    Article  ADS  Google Scholar 

  129. F.-Y. Cyr-Racine, K. Sigurdson, J. Zavala, T. Bringmann, M. Vogelsberger, and C. Pfrommer, “ETHOS–an effective theory of structure formation: From dark particle physics to the matter distribution of the Universe,” Phys. Rev. D 93, 123527 (2016); http://www.arXiv.org/abs/1512.05344.

    Article  ADS  MathSciNet  Google Scholar 

  130. F. Mayet et al., “A review of the discovery reach of directional Dark Matter detection,” Phys. Rep. 627, 1–49 (2016); http://www.arXiv.org/abs/1602.03781.

    Article  ADS  MathSciNet  Google Scholar 

  131. F. Froborg (SABRE Collab.), “SABRE: WIMP modulation detection in the northern and southern hemisphere,” J. Phys. Conf. Ser. 718, 042021 (2016); http://www.arXiv.org/abs/1601.05307.

    Article  Google Scholar 

  132. K. Freese, M. Lisanti, and C. Savage, “Colloquium: Annual modulation of dark matter,” Rev. Mod. Phys. 85, 1561–1581 (2013); http://www.arXiv.org/abs/1209.3339.

    Article  ADS  Google Scholar 

  133. R. Bernabei, P. Belli, F. Cappella, V. Caracciolo, S. Castellano, et al. (DAMA Collab.), “Final model independent result of DAMA/LIBRA-phase1,” Eur. Phys. J. C 73, 2648 (2013); http://www.arXiv.org/abs/1308.5109.

    Article  ADS  Google Scholar 

  134. M. Livio and J. Silk, “Broaden the search for dark matter,” Nature 507, 29 (2014); http://www.arXiv.org/abs/1404.2591.

    Article  ADS  Google Scholar 

  135. V. Bednyakov, “One needs positive signatures for detection of Dark Matter,” Phys. Part. Nucl. 44, 220–228 (2013); http://www.arXiv.org/abs/1207.2899.

    Article  Google Scholar 

  136. S. Jäger, “BEACH 2014 theory summary,” J. Phys.: Conf. Ser. 556, 12077 (2014); http://www.arXiv.org/abs/1501.07885v1.

    Google Scholar 

  137. G. Isidori, “Flavour physics and implication for new phenomena,” Adv. Ser. Dir. High Energy Phys. 26, 339–355 (2016); http://www.arXiv.org/abs/1507.00867.

    Article  MATH  Google Scholar 

  138. F. Sala, “Higgs and flavour as doors to new physics,” Eur. Phys. J. Plus 131, 79 (2016); http://www.arXiv.org/abs/1509.08655.

    Article  Google Scholar 

  139. L. Silvestrini, “CHARM-2015 theory summary,” in Proc. 7th International Workshop on Charm Physics (Charm 2015), Detroit, MI, USA, May 18–22, 2015 (2015); http://www.arXiv.org/abs/1510.05797.

    Google Scholar 

  140. A. J. Buras, D. Buttazzo, J. Girrbach-Noe, and R. Knegjens, “and in the Standard Model: Status and perspectives,” J. High Energy Phys. 11, 033 (2015); http://www.arXiv.org/abs/1503.02693.

    Article  ADS  Google Scholar 

  141. C. Bobeth, G. Hiller, D. van Dyk, and C. Wacker, “The decay at low hadronic recoil and model-independent constraints,” J. High Energy Phys. 01, 107 (2012); http://www.arXiv.org/abs/1111.2558.

    Article  ADS  MATH  Google Scholar 

  142. K. Ishiwata, N. Nagata, and N. Yokozaki, “Natural supersymmetry and constraints,” Phys. Lett. B 710, 145–148 (2012); http://www.arXiv.org/abs/1112.1944.

    Article  ADS  Google Scholar 

  143. S. L. Glashow, J. Iliopoulos, and L. Maiani, “Weak interactions with lepton-hadron symmetry,” Phys. Rev. D 2, 1285–1292 (1970).

    Article  ADS  Google Scholar 

  144. L. Maiani, “The GIM mechanism: Origin, predictions and recent uses,” in Proc. 48th Rencontres de Moriond on Electroweak Interactions and Unified Theories: La Thuile, Italy, March 2-9, 2013 (2013), pp. 3–16. http://www.arXiv.org/abs/1303.6154.

    Google Scholar 

  145. M. Le Dall, M. Pospelov, and A. Ritz, “Sensitivity to light weakly-coupled new physics at the precision frontier,” Phys, Rev. D 92, 016010 (2015); http://www.arXiv.org/abs/1505.01865.

    Article  ADS  Google Scholar 

  146. A. Faessler, T. S. Kosmas, S. Kovalenko, and J. D. Vergados, “Constraints on R-parity violating supersymmetry from muon electron nuclear conversion.” http://www.arXiv.org/abs/hep-ph/9904335.

  147. T. S. Kosmas and S. Kovalenko, “Lepton flavor violation: Constraints from exotic muon to electron conversion,” Phys. Atom. Nucl. 63, 1158–1164 (2000); http://www.arXiv.org/abs/hep-ph/0002070.

    Article  ADS  Google Scholar 

  148. F. Simkovic, A. Faessler, S. Kovalenko, and I. Schmidt, “The ( ) conversion in nuclei as a probe of new physics,” Phys. Rev. D 66, 033005 (2002); http://www.arXiv.org/abs/hep-ph/0112271.

    Article  ADS  Google Scholar 

  149. F. Simkovic, V. E. Lyubovitskij, T. Gutsche, A. Faessler, and S. Kovalenko, “Neutrino mediated muon electron conversion in nuclei revisited,” Phys. Lett. B 544, 121–126 (2002); http://www.arXiv.org/abs/hep-ph/0112277.

    Article  ADS  Google Scholar 

  150. M. Davidkov and D. I. Kazakov, “decay rate in the MSSM with minimal flavour violation,” Bulg. J. Phys. 38, 309–317 (2011); http://www.arXiv.org/abs/1102.1582.

    Google Scholar 

  151. T. Gutsche, J. C. Helo, S. Kovalenko, and V. E. Lyubovitskij, “New bounds on lepton flavor violating decays of vector mesons and the Z0 boson,” Phys. Rev. D 83, 115015 (2011); http://www.arXiv.org/abs/1103.1317.

    Article  ADS  Google Scholar 

  152. X. Garcia i Tormo, D. Bryman, A. Czarnecki, and M. Dowling, “Bounds on majoron emission from muon to electron conversion experiments,” Phys. Rev. D 84, 113010 (2011); http://www.arXiv.org/abs/1110.2874.

    Article  ADS  Google Scholar 

  153. A. Andronic et al., “Heavy-flavour and quarkonium production in the LHC era: From proton-proton to heavy-ion collisions,” Phys. Rev. Lett. 115, 072001 (2015); http://www.arXiv.org/abs/1506.03981.

    Article  ADS  Google Scholar 

  154. A. J. Schwartz, “CHARM 2015 experimental summary: Step-by-step towards new physics,” http://www.arXiv.org/abs/1511.04703.

  155. S. L. Olsen, “The role of flavor physics in the LHC era,” in Proc. 52nd International Winter Meeting on Nuclear Physics (Bormio 2014): Bormio, Italy, January 27–31, 2014. http://www.arXiv.org/abs/1409.02731409.0273.

    Google Scholar 

  156. S. J. Brodsky, “Novel heavy quark phenomena in QCD,” in PoS Hadron2013, 013 (2013); http://www.arXiv.org/abs/1401.5886.

  157. J. Ellis, “The beautiful physics of LHC Run 2,” in PoS Beauty2014, 056 (2015); http://www.arXiv.org/abs/1412.2666.

  158. T. Carli, K. Rabbertz, and S. Schumann, “Studies of quantum chromodynamics at the LHC,” in The Large Hadron Collider: Harvest of Run 1 (Springer, 2015), pp.139–194; http://www.arXiv.org/abs/1506.03239.

    Chapter  Google Scholar 

  159. C. D. Roberts, “Hadron physics and QCD: Just the basic facts //J. Phys. Conf. Ser. 630, 012051 (2015); http://www.arXiv.org/abs/1501.065811501.06581.

    Article  Google Scholar 

  160. U. Heinz et al., “Exploring the properties of the phases of QCD matter—research opportunities and priorities for the next decade,” http://www.arXiv.org/abs/1501.06477.

  161. S. J. Brodsky, A. L. Deshpande, H. Gao, R. D. McKeown, C. A. Meyer, Z.-E. Meziani, R. G. Milner, J. Qiu, D. G. Richards, and C. D. Roberts, “QCD and hadron physics,” http://www.arXiv.org/abs/1502.05728. μ−,μ+ μ → eγ

  162. A. Deur, S. J. Brodsky, and G. F. de Teramond, “On the interface between perturbative and nonperturbative QCD,” Phys. Lett. B 757, 275–281 (2016); http://www.arXiv.org/abs/1601.06568.

    Article  ADS  Google Scholar 

  163. J. Papavassiliou, “Hadron phenomenology from firstprinciple QCD studies,” Few-Body Syst. 57, 417–423 (2016); http://www.arXiv.org/abs/1602.00455.

    Article  ADS  Google Scholar 

  164. M. Grazzini, “Standard model theory for collider physics,” in PoS EPS-HEP2015, 007 (2015); http://www.arXiv.org/abs/1512.00647.

  165. S. Kumano, “Spin physics at J-PARC, Int. J. Mod. Phys. Conf. Ser. 40, 1660009 (2016); http://www.arXiv.org/abs/1504.05264.

    Article  Google Scholar 

  166. M. Boglione and A. Prokudin, “Phenomenology of transverse spin: Past, present and future,” Eur. Phys. J. A 52, 154 (2016); http://www.arXiv.org/abs/1511.06924.

    Article  ADS  Google Scholar 

  167. A. Accardi, “PDFs from nucleons to nuclei,” in PoS DIS2015, 001 (2015); http://www.arXiv.org/abs/1602.02035.

  168. H. E. Montgomery, “A vision of nuclear and particle physics.” http://www.arXiv.org/abs/1509.08417.

  169. D. Zaslavsky, “Saturation physics on the energy frontier,” in Proc. Meeting of the APS Division of Particles and Fields (DPF 2015): Ann Arbor, Michigan, USA, 4‒8 August 2015. http://www.arXiv.org/abs/1511.00386.

    Google Scholar 

  170. C. DeTar, “LQCD: Flavor physics and spectroscopy,” in PoS LeptonPhoton2015, 023 (2016); http://www.arXiv.org/abs/1511.06884.

  171. S. J. Brodsky, V. A. Bednyakov, G. I. Lykasov, J. Smiesko, and S. Tokar, “The physics of heavy quark distributions in hadrons: Collider tests.” http://www.arXiv.org/abs/1612.01351 (to be published in the Progress in Particle and Nuclear Physics).

  172. T. Inoue (HAL QCD Collab.), “Nuclear physics from QCD on lattice,” in PoS CD15, 020 (2016); http://www.arXiv.org/abs/1511.04871.

  173. C. A. Bertulani and M. S. Hussein, “Current status of nuclear physics research,” Braz. J. Phys. 45, 730–755 (2015); http://www.arXiv.org/abs/1509.00508.

    Article  ADS  Google Scholar 

  174. L. N. Savushkin, “Relativistic nuclear theory—nucleons and mesons: Origin, current status, and trends,” Physics of Particles and Nuclei 46 (2015).

  175. T. Horn and C. D. Roberts, “The pion: An enigma within the Standard Model,” J. Phys. G 43, 073001 (2016); http://www.arXiv.org/abs/1602.04016.

    Article  ADS  Google Scholar 

  176. H. Leutwyler, “On the history of the strong interaction,” Mod. Phys. Lett. A 29, 1430023 (2014); http://www.arXiv.org/abs/1211.6777.

    Article  ADS  MATH  Google Scholar 

  177. Y. Akiba, A. Angerami, H. Caines, A. Frawley, U. Heinz, B. Jacak, J. Jia, T. Lappi, W. Li, A. Majumder, D. Morrison, M. Ploskon, J. Putschke, K. Rajagopal, R. Rapp, G. Roland, P. Sorensen, U. Wiedemann, N. Xu, and W. A. Zajc, “The hot QCD White Paper: Exploring the phases of QCD at RHIC and the LHC.” http://www.arXiv.org/abs/1502.02730.

  178. S. J. Brodsky, “Light-front holography, color confinement, and supersymmetric features of QCD,” Few-Body Syst. 57, 703–715 (2016); http://www.arXiv.org/abs/1601.06328.

    Article  ADS  Google Scholar 

  179. S. J. Brodsky, “Novel QCD phenomena at JLab,” in PoS QCDEV2015, 003 (2015); http://www.arXiv.org/abs/1511.04142.

  180. M. F. M. Lutz et al., “Resonances in QCD,” Nucl. Phys. A 948, 93–105 (2016); http://www.arXiv.org/abs/1511.09353.

    Article  ADS  Google Scholar 

  181. E. Iancu, “QCD in heavy ion collisions,” in Proc. 2011 European School of High-Energy Physics (ESHEP 2011), Cheile Gradistei, Romania, September 7–20, 2011 (2014), pp. 197–266; http://www.arXiv.org/abs/1205.0579.

    Google Scholar 

  182. J. Rafelski, “Melting hadrons, boiling quarks,” Eur. Phys. J. A 51, 114 (2015); http://www.arXiv.org/abs/1508.03260.

    Article  ADS  Google Scholar 

  183. R. S. Bhalerao, “Relativistic heavy-ion collisions,” in Proceedings of the 1st Asia-Europe-Pacific School of High-Energy Physics (AEPSHEP), Fukuoka, Japan, October 14–27, 2012, (2014), pp. 219–239; http://www.arXiv.org/abs/1404.3294.

    Google Scholar 

  184. I. Y. Aref’eva, “Holographic approach to quark-gluon plasma in heavy ion collisions,” Phys. Usp. 57, 527–555 (2014).

    Article  ADS  Google Scholar 

  185. L. Y. Glozman, “No deconfinement in QCD?” http://www.arXiv.org/abs/1512.06703.

  186. S. Floerchinger, “Heavy ion collisions and cosmology,” Nucl. Phys. A 956, 91–98 (2016); http://www.arXiv.org/abs/1512.08388.

    Article  ADS  Google Scholar 

  187. M. Asakawa and M. Kitazawa, “Fluctuations of conserved charges in relativistic heavy ion collisions: An introduction,” Prog. Part. Nucl. Phys. 90, 299–342 (2016); http://www.arXiv.org/abs/1512.05038.

    Article  ADS  Google Scholar 

  188. B. Schenke, “Theory @ hard probes 2015,” in Proc. 7th International Conference on Hard and Electromagnetic Probes of High-Energy Nuclear Collisions (Hard Probes 2015), Montreal, Quebec, Canada, June 29–July 3, 2015; http://www.arXiv.org/abs/1510.04133.

    Google Scholar 

  189. M. Nahrgang, “The QCD critical point and related observables,” Nucl. Phys. A 956, 83–90 (2016); http://www.arXiv.org/abs/1601.07437.

    Article  ADS  Google Scholar 

  190. R. C. Hwa and C. B. Yang, “Observable properties of quark-hadron phase transition at the Large Hadron Collider,” http://www.arXiv.org/abs/1601.04671.

  191. G. de Angelis et al. (SPES Collab.,) “Nuclear structure studies with stable and radioactive beams: The SPES radioactive ion beam project,”J. Phys. Conf. Ser. 590, 012010 (2015).

    Article  Google Scholar 

  192. J. A. Cizewski and F. M. Nunes, “Theoretical and experimental perspectives of nuclear reaction studies with radioactive ion beams,” Acta Phys. Pol. B 46, 521 (2015).

    Article  ADS  Google Scholar 

  193. G. de Angelis et al., “The SPES radioactive ion beam project of LNL: Status and perspectives,” EPJ Web Conf. 107, 01001 (2016).

    Article  Google Scholar 

  194. R. Oganessian, G. Gulbekian, et al., “The Flerov Laboratory of Nuclear Reactions JINR radioactive ion beam project with the U400M–U400 cyclotron complex,” in Proc. 14th International Conference on Cyclotrons and their Applications (CYCLOTRONS 95), Faure, Cape Town, South Africa, 8–13 October 1995 (1996), p. M05.

    Google Scholar 

  195. B. Pontecorvo, “Neutron well logging. A new geological method based on nuclear physics,” in Selected Papers in 2 Volumes (Nauka, Moscow, 1997), Vol. 1, pp. 27–30 [in Russian].

    Google Scholar 

  196. B. Pontecorvo, “Una nota autobiografica,” in Selected Papers in 2 Volumes (Nauka, Moscow, 1997), Vol. 2, pp. 137–146 [in Russian].

    Google Scholar 

  197. H. Abele, “The neutron. Its properties and basic interactions,” Prog. Part. Nucl. Phys. 60, 1–81 (2008).

    Article  ADS  Google Scholar 

  198. Yu. V. Gaponov and Yu. A. Mostovoi, “Precision analysis of experiments studying the beta decay of the free neutron: Standard model and possibilities of its violation,” Phys. Atom. Nucl. 63, 1356–1376 (2000).

    Article  ADS  Google Scholar 

  199. Yu. V. Gaponov, N. B. Shulgina, and P. E. Spivak, “Neutron beta decay and the right-handed current problem,” Phys. Lett. B 253, 283–286 (1991).

    Article  ADS  Google Scholar 

  200. Yu. V. Gaponov, “Beta decay of the free neutron and hypothesis of intermediate leptoquark bosons,” Phys. Atom. Nucl. 62, 1206–1212 (1999).

    ADS  Google Scholar 

  201. K. Bodek, “Beta-decay correlations in the LHC era,” Acta Phys. Polon. B 47, 349–356 (2016); http://www.arXiv.org/abs/1602.04635.

    Article  Google Scholar 

  202. A. P. Serebrov, “Neutron beta-decay, standard model and cosmology,” Phys. Lett. B 650, 321–324 (2007); http://www.arXiv.org/abs/nucl-ex/0611038.

    Article  ADS  Google Scholar 

  203. N. A. Gundorin, S. S. Zeinalov, Yu. N. Kopach, A. B. Popov, and V. I. Furman, “Investigations of fission characteristics and correlation effects,” Phys. Part. Nucl. 47, 681–701 (2016).

    Article  Google Scholar 

  204. A. M. Balagurov, I. A. Bobrikov, G. D. Bokuchava, V. V. Zhuravlev, and V. G. Simkin, “Correlation Fourier diffractometry: 20 years of experience at the IBR-2 reactor,” Phys. Part. Nucl. 46, 249–276 (2015).

    Article  Google Scholar 

  205. K. D. Su, A. P. Sumbaev, and V. N. Shvetsov, “180MW/180KW pulse modulator for S-band klystron of LUE-200 linac of IREN installation of JINR,” Phys. Part. Nucl. Lett. 11, 672–674 (2014).

    Article  Google Scholar 

  206. J. Boettcher et al., “The LUE-200 accelerator at the IREN facility: Current status and development,” Phys. Part. Nucl. Lett. 11, 665–671 (2014).

    Article  Google Scholar 

  207. V. V. Nesvizhevsky, A. P. Serebrov, R. R. Taldaev, A. G. Kharitonov, V. P. Alfimenkov, A. V. Strelkov, and V. N. Shvetsov, “Measurement of the neutron lifetime in a gravitational trap and analysis of experimental errors,” Sov. Phys. JETP 75, 405–412 (1992).

    Google Scholar 

  208. D. Dubbers, “The present status of particle physics with slow neutrons,” Phys. Procedia 51, 13–18 (2014).

    Article  ADS  Google Scholar 

  209. E. V. Lychagin, A. Yu. Muzychka, G. V. Nekhaev, V. V. Nesvizhevsky, E. I. Sharapov, and A. V. Strelkov, “UCN source at an external beam of thermal neutrons,” Adv. High Energy Phys. 2015, 547620 (2015).

    Article  Google Scholar 

  210. A. I. Frank, “Fundamental properties of the neutron: 50 years of research,” Sov. Phys. Usp. 25, 280–297 (1982).

    Article  ADS  Google Scholar 

  211. A. P. Serebrov, “Neutron lifetime measurement using gravitationally trapped ultracold neutrons,” Phys. Usp. 48, 867–885 (2005).

    Article  ADS  Google Scholar 

  212. A. Aboubrahim, T. Ibrahim, and P. Nath, “Neutron electric dipole moment and probe of PeV scale physics,” Phys. Rev. D 91, 095017 (2015); http://www.arXiv.org/abs/1503.06850.

    Article  ADS  Google Scholar 

  213. P. Schmidt-Wellenburg, “The quest for an electric dipole moment of the neutron,” AIP Conf. Proc. 1753, 060002 (2016); http://www.arXiv.org/abs/1602.01997.

    Google Scholar 

  214. A. Addazi, “Neutron–antineutron transition as a testbed for dynamical CPT violations,” Int. J. Mod. Phys. A 31, 1650084 (2016); http://www.arXiv.org/abs/1505.02080.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  215. Yu. P. Gangrskii, V. A. Grigor’ev, V. M. Emel’yanov, K. O. Lapidus, Yu. Ts. Oganessian, Yu. E. Penionzhkevich, and Yu. V. Pyatkov. Introduction to Heavy Ion Physics. Text-Book. Ed. by Yu. Ts. Oganessian (MEPhI, Moscow, 2008) [in Russian].

    Google Scholar 

  216. J. H. Hamilton, S. Hofmann, and Yu. Ts. Oganessian, “Search for superheavy nuclei,” Ann. Rev. Nucl. Part. Sci. 63, 383–405 (2013).

    Article  ADS  Google Scholar 

  217. Yu. Oganessian, “Heaviest nuclei from Ca-48 induced reactions,” J. Phys. G 34, R165–R242 (2007).

    Article  ADS  Google Scholar 

  218. Yu. Ts. Oganessian and V. K. Utyonkov, “Superheavy nuclei from 48Ca-induced reactions,” Nucl. Phys. A 944, 62–98 (2015).

    Article  ADS  Google Scholar 

  219. R. D. Loss and J. Corish, “Names and symbols of the elements with atomic numbers 114 and 116 (IUPAC recommendations 2012),” Pure Appl. Chem. 84, 1669–1672 (2012).

    Article  Google Scholar 

  220. W. H. Bassichis and A. K. Kerman, “Self-consistent calculations of shell effects including the proposed island of stability,” Phys. Rev. C 2, 1768–1776 (1970).

    Article  ADS  Google Scholar 

  221. R. D. Herzberg et al., “Nuclear isomers in superheavy elements as stepping stones towards the island of stability,” Nature 442, 896–899 (2006).

    Article  ADS  Google Scholar 

  222. G. T. Seaborg, “Elements beyond 100, present status and future prospects,” Ann. Rev. Nucl. Part. Sci. 18, 53–152 (1968).

    Article  ADS  Google Scholar 

  223. P. J. Karol et al., “Discovery of the elements with atomic numbers = 113, 115 and 117,” Pure Appl. Chem. 88, 139 (2016).

    Google Scholar 

  224. P. J. Karol, “Discovery of the element with atomic number Z = 118 completing the 7th row of the periodic table,” Pure Appl. Chem. 88, 155 (2016).

    Google Scholar 

  225. J. H. Hamilton, Yu. Ts. Oganessian, and V. K. Utyonkov, “Discoveries of elements 113, 115 and 117,” J. Phys. Conf. Ser. 403, 012035 (2012).

    Article  Google Scholar 

  226. Yu. Ts. Oganessian et al., “New insights into the Am-243 + Ca-48 reaction products previously observed in the experiments on elements 113, 115, and 117,” Phys. Rev. Lett. 108, 022502 (2012).

    Article  ADS  Google Scholar 

  227. G. Aad et al. (ATAS Collab.), “The ATLAS experiment at the CERN Large Hadron Collider,” J. Instrum. 3, 08003 (2008).

    Article  Google Scholar 

  228. S. Chatrchyan et al. (CMS Collab.), “The CMS experiment at the CERN LHC,” J. Instrum. 3, 08004 (2008).

    Google Scholar 

  229. I. R. Boiko, K. V. Nikolaev, and G. A. Shelkov, “A study of Higgs boson decay based on full simulation of an ATLAS detector,” Phys. Part. Nucl. Lett. 2, 67–76 (2005).

    Google Scholar 

  230. R. Leitner (ATLAS Collab.), “Status of the ATLAS hadronic tile calorimeter,” Phys. Part. Nucl. Lett. 2, 102–109 (2005).

    Google Scholar 

  231. V. Bednyakov, E. Khramov, N. Russakovich, and A. Tonoyan, “Measurement of the top quark charge at the ATLAS detector,” Phys. Part. Nucl. Lett. 4, 491–7496 (2007).

    Article  Google Scholar 

  232. E. V. Khramov, A. Tonoyan, V. A. Bednyakov, and N. A. Russakovich, “Search for t anti-t resonances with the ATLAS detector,” http://www.arXiv.org/abs/0705.2001.

  233. E. V. Khramov, A. N. Tonoyan, V. A. Bednyakov, and N. A. Russakovich, “On the possibility of the search for top-antitop resonances at LHC,” Phys. Part. Nucl. Lett. 5, 515–519 (2008).

    Article  Google Scholar 

  234. E. V. Khramov, A. N. Tonoyan, V. A. Bednyakov, and N. A. Rusakovich, “Top quark from the Tevatron to LHC,” Phys. Part. Nucl. 39, 74–88 (2008).

    Article  Google Scholar 

  235. V. A. Bednyakov and N. A. Russakovich, “JINR participation in the ATLAS physics program,” Fiz. B 17, 47–56 (2008).

    ADS  Google Scholar 

  236. A. S. Boldyrev et al., “The ATLAS transition radiation tracker,” Instrum. Exp. Tech. 55, 323–334 (2012).

    Article  Google Scholar 

  237. Yu. V. Gusakov et al., “ATLAS TRT: Research & design B-type module mass production,” Phys. Part. Nucl. 41, 1–26 (2010).

    Article  Google Scholar 

  238. Yu. V. Gusakov, I. A. Zhukov, V. M. Lysan, V. V. Myalkovsky, A. F. Novgorodov, and V. D. Peshekhonov, “Automated stand check of 'B' type TRT ATLAS wheel straw detectors,” Phys. Part. Nucl. Lett. 3, 206–210 (2006).

    Article  Google Scholar 

  239. I. V. Boguslavsky et al., “Transition radiation detectors: 'B' trackers manufactured at JINR for ATLAS LHC inner detector,” Phys. Part. Nucl. Lett. 3, 201–205 (2006).

    Article  Google Scholar 

  240. V. Davkov, K. Davkov, V. V. Myalkovsky, L. Naumann, V. D. Peshekhonov, A. A. Savenkov, K. S. Viryasov, and I. A. Zhukov, “Development of high granulated straw chambers of large sizes,” Phys. Part. Nucl. Lett. 4, 323–326 (2007); http://www.arXiv.org/abs/physics/0701133.

    Article  Google Scholar 

  241. V. Batusov, Yu. Budagov, V. B. Flyagin, Z. Khubua, Yu. Lomakin, M. Lyablin, N. Russakovich, D. Shabalin, and N. Topilin, “High precision laser control of the ATLAS tile-calorimeter module mass production at JINR,” Part. Nucl. Lett 102, 33–40 (2001).

    Google Scholar 

  242. V. Yu. Batusov, Yu. A. Budagov, Yu. A. Kulchitsky, M. V. Lyablin, M. Nessi, N. A. Rusakovich, A. N. Sisakian, N. D. Topilin, and D. I. Khubua, “ATLAS hadron tile calorimeter: Experience in prototype construction and module mass production,” Phys. Part. Nucl. 37, 785–806 (2006).

    Article  Google Scholar 

  243. V. Yu. Batusov, M. V. Lyablin, and N. D. Topilin, “Development and application of the complex hardware/software system for controlled assembly of the ATLAS hadron tile calorimeter,” Phys. Part. Nucl. 42, 438–459 (2011).

    Article  Google Scholar 

  244. P. Adragna et al., “Testbeam studies of production modules of the ATLAS tile calorimeter,” Nucl. Instrum. Methods Phys. Res., Sect. A 606, 362–394 (2009).

    Article  ADS  Google Scholar 

  245. V. Batusov et al., “The module nuclear absorber of the ATLAS hadron calorimeter (an experiment of controlled assembly on the surface and underground),” Phys. Part. Nucl. Lett. 6, 337–347 (2009).

    Article  Google Scholar 

  246. P. Adragna et al., “Measurement of pion and proton response and longitudinal shower profiles up to 20 nuclear interaction lengths with the ATLAS tile calorimeter,” Nucl. Instrum. Methods Phys. Res., Sect. A 615, 158–181 (2010).

    Article  ADS  Google Scholar 

  247. J. Abdallah et al., (ATLAS Tile Calorimeter Collab.), “Mechanical construction and installation of the ATLAS tile calorimeter,” J. Instrum. 8, T11001 (2013).

    Article  Google Scholar 

  248. E. Abat et al. (ATLAS Collab.), “Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20GeV to 350GeV,” Nucl. Instrum. Methods Phys. Res., Sect. A 621, 134–150 (2010).

    Article  ADS  Google Scholar 

  249. A. Afonin et al. (ATLAS HiLum Endcap Collab.), “Relative luminosity measurement of the LHC with the ATLAS forward calorimeter,” J. Instrum. 5, P05005 (2010); http://www.arXiv.org/abs/1005.1784.

    Article  Google Scholar 

  250. N. S. Astakhov et al., “JINR Tier-1 centre for the CMS experiment at LHC,” Phys. Part. Nucl. Lett. 13, 714–717 (2016).

    Article  Google Scholar 

  251. A. O. Golunov, N. V. Gorbunov, V. V. Korenkov, S. V. Shmatov, and A. V. Zarubin, “CMS remote center at JINR,” Phys. Part. Nucl. Lett. 10, 81–84 (2013).

    Article  Google Scholar 

  252. I. A. Golutvin and A. V. Zarubin, “JINR participation in the CMS project,” Phys. Part. Nucl. 33, 334–342 (2002).

    Google Scholar 

  253. S. Chatrchyan et al. (CMS Collab.), “Measurement of the differential and double-differential Drell–Yan cross sections in proton-proton collisions at = 7TeV,” J. High Energy Phys. 12, 030 (2013); http://www.arXiv.org/abs/1310.7291.

    Article  ADS  Google Scholar 

  254. V. Khachatryan et al. (CMS Collab.), “Search for a standard model-like Higgs boson in the and decay channels at the LHC,” Phys. Lett. B 744, 184–207 (2015); http://www.arXiv.org/abs/1410.6679.

    Article  ADS  Google Scholar 

  255. V. Khachatryan et al. (CMS Collab.), “Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs,” Phys. Lett. B 736, 64–85 (2014); http://www.arXiv.org/abs/1405.3455.

    Article  ADS  Google Scholar 

  256. V. Khachatryan et al. (CMS Collab.), “Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8TeV,” Phys. Rev. D 92, 012004 (2015); http://www.arXiv.org/abs/1411.3441.

    Article  ADS  MathSciNet  Google Scholar 

  257. V. Khachatryan et al. (CMS Collab.), “Measurements of differential and double-differential Drell–Yan cross sections in proton-proton collisions at 8TeV,” Eur. Phys. J. C 75, 147 (2015); http://www.arXiv.org/abs/1412.1115.

    Article  ADS  Google Scholar 

  258. V. A. Bednyakov, I. V. Yeletskikh, M. V. Chizhov, and I. R. Boyko, “Anomalously interacting Z* bosons: An example of JINR’S contribution to physics at LHC,” Phys. Usp. 59, 403–410 (2016).

    Article  ADS  Google Scholar 

  259. M. V. Chizhov, V. A. Bednyakov, and J. A. Budagov, “Proposal for chiral bosons search at LHC via their unique new signature,” Phys. Atom. Nucl. 71, 2096–2100 (2008); http://www.arXiv.org/abs/0801.4235.

    Article  ADS  Google Scholar 

  260. M. V. Chizhov, “Theory and phenomenology of spin-1 chiral particles,” Phys. Part. Nucl. 42, 93–183 (2011).

    Article  Google Scholar 

  261. M. V. Chizhov, I. R. Boyko, V. A. Bednyakov, and J. A. Budagov, “Hadron collider potential for excited bosons search,” Phys. Part. Nucl. 45, 517–528 (2014).

    Article  Google Scholar 

  262. M. V. Chizhov, V. A. Bednyakov, and J. A. Budagov, “Hadron collider potential for excited bosons search: A Snowmass whitepaper.” http://www.arXiv.org/abs/1307.7274.

  263. G. Aad et al. (ATLAS Collab.), “Search for high-mass resonances decaying to dilepton final states in pp collisions at 7TeV with the ATLAS detector,” J. High Energy Phys. 11, 138 (2012); http://www.arXiv.org/abs/1209.2535.

    Article  ADS  Google Scholar 

  264. G. Aad et al. (ATLAS Collab.), Search for high-mass dilepton resonances in pp collisions at xxxx TeV with the ATLAS detector,” Phys. Rev. D 90, 052005 (2014); http://www.arXiv.org/abs/1405.4123.

    Article  ADS  Google Scholar 

  265. M. V. Chizhov, V. A. Bednyakov, I. R. Boyko, J. A. Budagov, M. A. Demichev, and I. V. Yeletskikh, “Anomalously interacting new extra vector bosons and their first LHC constraints,” Phys. Part. Nucl. 43, 311–325 (2012); http://www.arXiv.org/abs/1110.3149.

    Article  Google Scholar 

  266. M. V. Chizhov, V. A. Bednyakov, and J. A. Budagov, “On resonance search in dilepton events at the LHC,” Phys. Part. Nucl. Lett. 10, 144–146 (2013); http://www.arXiv.org/abs/1109.6876.

    Article  Google Scholar 

  267. M. V. Chizhov, V. A. Bednyakov, and J. A. Budagov, “A unique signal of excited bosons in dijet data from pp-collisions,” Phys. Atom. Nucl. 75, 90–96 (2012); http://www.arXiv.org/abs/1010.2648.

    Article  ADS  Google Scholar 

  268. M. V. Chizhov and V. A. Bednyakov, “Signatures of lower scale gauge coupling unification in the Standard Model due to extended Higgs sector,” Phys. Atom. Nucl. 79, 721–725 (2016); http://www.arXiv.org/abs/1509.07610.

    Article  ADS  Google Scholar 

  269. G. Aad et al. (ATLAS Collab.), “Search for squarks and gluinos in events with isolated leptons, jets and missing transverse momentum at xxxx TeV with the ATLAS detector,” J. High Energy Phys. 04, 116 (2015); http://www.arXiv.org/abs/1501.03555.

    Article  ADS  Google Scholar 

  270. E. Khramov (ATLAS Collab.), “SUSY overview at ATLAS,” in PoS QFTHEP2013, 026 (2013).

  271. V. A. Bednyakov, Yu. A. Budagov, A. V. Gladyshev, D. I. Kazakov, E. V. Khramov, D. I. Khubua, “On the LHC observation of gluinos from the Egret-preferred region,” Phys. Atom. Nucl. 72, 619–637 (2009).

    Article  ADS  Google Scholar 

  272. V. A. Bednyakov, J. A. Budagov, A. V. Gladyshev, D. I. Kazakov, E. V. Khramov, and D. I. Khubua, “Lepton decay channels of EGRET gluinos at the LHC,” Phys. Part. Nucl. Lett. 5, 520–530 (2008).

    Article  Google Scholar 

  273. G. Aad et al. (ATLAS Collab.), “Search for doublycharged Higgs bosons in like-sign dilepton final states at xxxx TeV with the ATLAS detector,” Eur. Phys. J. C 72, 2244 (2012); http://www.arXiv.org/abs/1210.5070.

    Article  ADS  Google Scholar 

  274. G. Aad et al. (ATLAS Collab.), “Search for charged Higgs bosons decaying via in fully hadronic final states using collision data at TeV with the ATLAS detector,” J. High Energy Phys. 03, 088 (2015); http://www.arXiv.org/abs/1412.6663.

    Article  ADS  Google Scholar 

  275. G. Aad et al. (ATLAS Collab.), “Search for charged Higgs bosons in the decay channel in collisions at TeV using the ATLAS detector,” J. High Energy Phys. 03, 127 (2016); http://www.arXiv.org/abs/1512.03704.

    Article  ADS  Google Scholar 

  276. P.-H. Beauchemin, V. A. Bednyakov, G. I. Lykasov, and Yu. Yu. Stepanenko, “Search for intrinsic charm in vector boson production accompanied by heavy flavor jets,” Phys. Rev. D 92, 034014 (2015); http://www.arXiv.org/abs/1410.2616.

    Article  ADS  Google Scholar 

  277. G. I. Lykasov, I. V. Bednyakov, M. A. Demichev, and Yu. Yu. Stepanenko, “Nucleon structure and hard p–p processes at high energies,” Nucl. Phys. Proc. Suppl. 245, 215–222 (2013); http://www.arXiv.org/abs/1309.3168.

    Article  ADS  Google Scholar 

  278. V. A. Bednyakov, M. A. Demichev, G. I. Lykasov, T. Stavreva, M. Stockton, “Searching for intrinsic charm in the proton at the LHC,” Phys. Lett. B 728, 602–606 (2014); http://www.arXiv.org/abs/1305.3548.

    Article  ADS  Google Scholar 

  279. G. I. Lykasov, V. A. Bednyakov, A. F. Pikelner, and N. I. Zimine, “Forward heavy flavour production in p–p collisions at LHC and intrinsic quark components in proton,” Europhys. Lett. 99, 21002 (2012); http://www.arXiv.org/abs/1205.1131.

    Article  ADS  Google Scholar 

  280. G. Lykasov and V. Bednyakov, “Monitoring of charmed and beauty quark distributions in proton at LHC,” Fiz. B 17, 293–298 (2008); http://www.arXiv.org/abs/0801.2093.

    ADS  Google Scholar 

  281. G. Aad et al. (ATLAS Collab.), “Measurement of and meson production cross sections in collisions at TeV with the ATLAS detector,” Nucl. Phys. B 907, 717–763 (2016); http://www.arXiv.org/abs/1512.02913.

    Article  ADS  MathSciNet  Google Scholar 

  282. G. Aad et al. (ATLAS Collab.), “Measurement of the branching ratio with the ATLAS detector,” Phys. Lett. B 751, 63–80 (2015); http://www.arXiv.org/abs/1507.08202.

    Article  ADS  Google Scholar 

  283. G. Aad et al. (ATLAS Collab.), “Measurement of meson production in jets from collisions at TeV with the ATLAS detector,” Phys. Rev. D 85, 052005 (2012); http://www.arXiv.org/abs/1112.4432.

    Article  ADS  Google Scholar 

  284. G. Aad et al. (ATLAS Collab.), “and production in pp interactions at and 7TeV measured with the ATLAS detector at the LHC,” Phys. Rev. D 85, 012001 (2012); http://www.arXiv.org/abs/1111.1297.

    Article  ADS  Google Scholar 

  285. G. Aad et al. (ATLAS Collab.), “Measurement of the lifetime and mass in the ATLAS experiment,” Phys. Rev. D 87, 032002 (2013); http://www.arXiv.org/abs/1207.2284.

    Article  ADS  Google Scholar 

  286. G. Aad et al. (ATLAS Collab.), “Measurement of the transverse polarization of and hyperons produced in proton-proton collisions at TeV using the ATLAS detector,” Phys. Rev. D 91, 032004 (2015); http://www.arXiv.org/abs/1412.1692.

    Article  ADS  Google Scholar 

  287. G. I. Lykasov, A. A. Grinyuk, and V. A. Bednyakov, “Saturation of gluon density and soft pp collisions at LHC,” Phys. Part. Nucl. 44, 568–572 (2013).

    Article  Google Scholar 

  288. V. A. Bednyakov, A. A. Grinyuk, G. I. Lykasov, and M. Poghosyan, “Role of gluons in soft and semi-hard multiple hadron production in pp collisions at LHC,” Int. J. Mod. Phys. A 27, 1250042 (2012); http://www.arXiv.org/abs/1104.0532.

    Article  ADS  MATH  Google Scholar 

  289. V. A. Bednyakov, G. I. Lykasov, and M. G. Poghosyan, “Gluons in proton and soft pp collisions at high ener-D*±, D± ± Ds pp s = 7 Γ(Λb0 → ψ(2S)Λ0) Γ(Λ0b → J ψΛ0) D± pp s = 7Kshort Λ s = 0.9 Λ0b Λ Λ s = 7 gies,” in Proc. Workshop on Hadron Structure and QCD: From Low to High Energies (HSQCD 2010) Gatchina, St. Petersburg, Russia, July 5–9, 2010; http://www.arXiv.org/abs/1010.0841.

    Google Scholar 

  290. G. Aad et al. (ATLAS Collab.), “Two-particle Bose–Einstein correlations in pp collisions at and 7TeV measured with the ATLAS detector,” Eur. Phys. J. C 75, 466 (2015); http://www.arXiv.org/abs/1502.07947.

    Article  ADS  Google Scholar 

  291. V. Khachatryan et al. (CMS Collab.), “Search for physics beyond the standard model in dilepton mass spectra in proton-proton collisions at TeV,” J. High Energy Phys. 04, 025 (2015); http://www.arXiv.org/abs/1412.6302.

    Article  ADS  Google Scholar 

  292. S. V. Shmatov, “Overview of physics results from the CMS experiment at the LHC,” Phys. Atom. Nucl. 78, 509–520 (2015).

    Article  ADS  Google Scholar 

  293. V. F. Konoplyanikov, M. V. Savina, S. V. Shmatov, and S. G. Shulga, “Uncertainties of Drell–Yan production cross section in pp collisions at the LHC,” Phys. Part. Nucl. Lett. 11, 722–729 (2014).

    Article  Google Scholar 

  294. S. Chatrchyan et al. (CMS Collab.), “Search for physics beyond the standard model in opposite-sign dilepton events at TeV, ”J. High Energy Phys. 06, 026 (2011); http://www.arXiv.org/abs/1103.1348.

    Article  ADS  Google Scholar 

  295. I. A. Golutvin, V. Palichik, M. V. Savina, and S. V. Shmatov, “Search for new neutral gauge bosons at LHC,” Phys. Atom. Nucl. 70, 56–62 (2007).

    Article  ADS  Google Scholar 

  296. I. N. Gorbunov and S. V. Shmatov, “Investigation of Drell–Yan processes in the CMS at the LHC,” Phys. Atom. Nucl. 78, 603–607 (2015).

    Article  ADS  Google Scholar 

  297. S. Chatrchyan et al. (CMS Collab.), “Forward-backward asymmetry of Drell–Yan lepton pairs in collisions at TeV,” Phys. Lett. B 718, 752–772 (2013); http://www.arXiv.org/abs/1207.3973.

    Article  ADS  Google Scholar 

  298. V. Khachatryan et al. (CMS Collab.), “Forward-backward asymmetry of Drell–Yan lepton pairs in pp collisions at TeV.” http://www.arXiv.org/abs/1601.04768.

  299. A. Lanev, “CMS results: Higgs boson and search for new physics,” Phys. Usp. 57, 923–930 (2014).

    Article  ADS  Google Scholar 

  300. A. F. Dunaitsev, V. I. Petrukhin, Yu. D. Prokoshkin, and V. I. Rykalin, “Pion beta-decay,” Sov. Phys.-JETP 20, 58–62 (1965).

    Google Scholar 

  301. B. Pontecorvo, “Experiments with neutrinos emitted by mesons,” Sov. Phys. JETP 39, 1166 (1960).

    Google Scholar 

  302. B. Pontecorvo, “Electron and muon neutrinos,” Sov. Phys. JETP 10, 1236–1240 (1960).

    Google Scholar 

  303. O. A. Zaimidoroga, M. M. Kulyukin, B. Pontecorvo, R. M. Sulyaev, I. V. Falomkin, A. I. Filippov, V. M. Tsupko-Sitnikov, and Yu. A. Shcherbakov, “Measurement of the probability of the reaction: Final results,” Sov. Phys.-JETP 17, 266 (1963).

    Google Scholar 

  304. O. A. Zaimidoroga, M. M. Kulyukin, B. Pontecorvo, R. M. Sulyaev, I. V. Falomkin, A. I. Filippov, V. M. Tsupko-Sitnikov, Yu. A. Shcherbakov, “Measurement of the total muon capture rate in He-3,” Phys. Lett. 6, 100–102 (1963).

    Article  ADS  Google Scholar 

  305. V. M. Bystritskii, V. P. Dzhelepov, P. F. Yermolov, K. O. Oganesyan, M. N. Omelyanenko, S. Yu. Porokhovoi, V. S. Roganov, A. I. Rudenko, and V. V. Fil’chenkov, “Measurement of the rate of muon capture in gaseous hydrogen,” Sov. Phys.-JETP 39, 19 (1974).

    ADS  Google Scholar 

  306. Ts. Vylov, V. B. Brudanin, V. M. Gorozhankin, K. Ya.Gromov, A. Marinov, A. Minkova, A. I. Muminov, and V. N. Pokrovsky, “Measuring the helicity of neutrinos from the decay of Eu-152m using a Ge(Li) detector,” Bull. Acad. Sci. USSR, Phys. Ser. 48, 155–64 (1984).

    Google Scholar 

  307. B. Pontecorvo, “Mesonium and antimesonium,” Sov. Phys. JETP 6, 429 (1958).

    ADS  Google Scholar 

  308. B. Pontecorvo, “Inverse beta processes and nonconservation of lepton charge,” Sov. Phys. JETP 7, 172–173 (1958).

    Google Scholar 

  309. D. V. Naumov and V. A. Naumov, “Diagrammatic treatment of neutrino oscillations,” J. Phys. G 37, 105014 (2010); http://www.arXiv.org/abs/1008.0306.

    Article  ADS  MATH  Google Scholar 

  310. D. V. Naumov and V. A. Naumov, “Relativistic wave packets in a field theoretical approach to neutrino oscillations,” Russ. Phys. J. 53, 549–574 (2010).

    Article  MATH  Google Scholar 

  311. G. Ranucci et al., “Overview and accomplishments of the Borexino experiment,” J. Phys. Conf. Ser. 675, 012036 (2016).

    Article  Google Scholar 

  312. O. Yu. Smirnov et al., “Measurement of solar pp-neutrino flux with Borexino: Results and implications,” J. Phys. Conf. Ser. 675, 012027 (2016).

    Article  Google Scholar 

  313. O. Smirnov et al., “Solar neutrinos with Borexino: Results and perspectives,” Phys. Part. Nucl. 46, 304–316 (2015).

    Google Scholar 

  314. G. Bellini et al., “Neutrino measurements from the Sun and Earth: Results from Borexino,” AIP Conf. Proc. 1666, 090002 (2015).

    Article  Google Scholar 

  315. L. Ludhova et al., “Geo-neutrinos and Borexino,” Phys. Part. Nucl. 46, 317–330 (2015).

    Article  Google Scholar 

  316. P. Adamson et al., (NOvA Collab.), “First measurement of electron neutrino appearance in NOvA,” Phys. Rev. Lett. 116, 151806 (2016); http://www.arXiv.org/abs/1601.05022.

    Article  ADS  Google Scholar 

  317. S. Bharti, S. Prakash, U. Rahaman, and S. U. Sankar, “Hierarchy sensitivity of NOvA in light of T2K electron neutrino appearance data,” http://www.arXiv.org/abs/1602.03513.

  318. N. Agafonova et al. (OPERA Collab.), “Discovery of neutrino appearance in the CNGS neutrino beam with the OPERA experiment,” Phys. Rev. Lett. 115, 121802 (2015); http://www.arXiv.org/abs/1507.01417.

    Article  ADS  Google Scholar 

  319. V. B. Brudanin, D. V. Medvedev, A. S. Starostin, and A. I. Studenikin, “New bounds on neutrino electric millicharge from GEMMA experiment on neutrino magnetic moment,” in Proc. International Conference on High Energy Physics 2014 (ICHEP 2014) Valencia, Spain, July 2–9, 2014; http://www.arXiv.org/abs/1411.2279.

    Google Scholar 

  320. A. G. Beda, V. B. Brudanin, V. G. Egorov, D. V. Medvedev, V. S. Pogosov, E. A. Shevchik, M. V. Shirchenko, A. S. Starostin, and I. V. Zhitnikov, “GEMMA experiment: The results of neutrino magnetic moment search,” Phys. Part. Nucl. Lett. 10, 139–143 (2013).

    Article  Google Scholar 

  321. V. Belov et al., “Registration of reactor neutrinos with the highly segmented plastic scintillator detector τ DANSSino,” J. Instrum. 8, P05018 (2013); http://www.arXiv.org/abs/1304.3696.

    Article  Google Scholar 

  322. V. Belov et al., “The GeN experiment at the Kalinin Nuclear Power Plant,” J. Instrum. 10, P12011 (2015).

    Article  Google Scholar 

  323. F. P. An et al. (Daya Bay Collab.), “Observation of electron-antineutrino disappearance at Daya Bay,” Phys. Rev. Lett. 108, 171803 (2012); http://www.arXiv.org/abs/1203.1669.

    Article  ADS  Google Scholar 

  324. F. P. An et al. (Daya Bay Collab.), “Independent measurement of the neutrino mixing angle via neutron capture on hydrogen at Daya Bay,” Phys. Rev. D 90, 071101 (2014); http://www.arXiv.org/abs/1406.6468.

    Article  ADS  Google Scholar 

  325. F. P. An et al. (Daya Bay Collab.), “Search for a light sterile neutrino at Daya Bay,” Phys. Rev. Lett. 113, 141802 (2014) http://www.arXiv.org/abs/1407.7259.

    Article  ADS  Google Scholar 

  326. F. P. An et al. (Daya Bay Collab.), “New measurement of antineutrino oscillation with the full detector configuration at Daya Bay,” Phys. Rev. Lett. 115, 111802 (2015); http://www.arXiv.org/abs/1505.03456.

    Article  ADS  Google Scholar 

  327. Z. Djurcic et al., (JUNO Collab.), “JUNO conceptual design report.” http://www.arXiv.org/abs/1508.07166.

  328. F. An et al. (JINO Collab.), “Neutrino physics with JUNO,” J. Phys. G 43, 030401 (2016); http://www.arXiv.org/abs/1507.05613.

    Article  ADS  Google Scholar 

  329. A. V. Avrorin, “Data acquisition system for the Baikal-GVD neutrino telescope,” Phys. Part. Nucl. 47, 933–937 (2016).

    Article  Google Scholar 

  330. A. D. Avrorin et al., “Neutrino signal at Baikal from dark matter in the galactic center,” Phys. Part. Nucl. 47, 926–932 (2016).

    Article  Google Scholar 

  331. S. V. Demidov and O. V. Suvorova, “Indirect searches for dark matter at Baksan and Baikal,” Phys. Part. Nucl. 46, 222–229 (2015).

    Article  Google Scholar 

  332. A. D. Avrorin, “Status and recent results of the BAIKAL-GVD project,” Phys. Part. Nucl. 46, 211–221 (2015).

    Article  Google Scholar 

  333. M. G. Aartsen et al. (IceCube Collab.), “Evidence for high-energy extraterrestrial neutrinos at the IceCube detector,” Science 342, 1242856 (2013); http://www.arXiv.org/abs/1311.5238.

    Article  Google Scholar 

  334. M. G. Aartsen et al. (IceCube Collab.), “First observation of PeV-energy neutrinos with IceCube,” Phys. Rev. Lett. 111, 021103 (2013), http://www.arXiv.org/abs/1304.5356.

    Article  ADS  Google Scholar 

  335. A. V. Avrorin et al., “Search for astrophysical neutrinos in the Baikal neutrino project,” Phys. Part. Nucl. Lett. 8, 704–716 (2011).

    Article  Google Scholar 

  336. A. D. Avrorin et al., “Baikal-GVD: First cluster Dubna,” in Proc. 2015 European Physical Society Conference on High Energy Physics (EPS-HEP 2015). http://www.arXiv.org/abs/1511.02324.

    Google Scholar 

  337. A. D. Avrorin et al. (BAIKAL–GVD Collab.), “Status of the Baikal-GVD project,” in Proc. 16th Lomonosov Conference on Elementary Particle Physics: Particle Physics at the Year of Centenary of Bruno Pontecorvo, Moscow, Russia, August 22-28, (World Sci., Singapore, 2015), pp. 98–101.

    Google Scholar 

  338. A. V. Avrorin et al., “A hydroacoustic positioning system for the experimental cluster of the cubic-kilometer-scale neutrino telescope at Lake Baikal,” Instrum. Exp. Tech. 56, 449–458 (2013).

    Article  Google Scholar 

  339. V. Bednyakov and D. Naumov, The White Book: JINR Neutrino Program (JINR, Dubna, 2014).

    Google Scholar 

  340. C. Spiering, “The global neutrino network takes off,” CERN Courier 54, no. 12, 10 (2014).

    Google Scholar 

  341. R. Arnold et al. (NEMO–3Collab.), “Results of the search for neutrinoless double-β decay in 100Mo with the NEMO-3 experiment,” Phys. Rev. D 92, 072011 (2015); http://www.arXiv.org/abs/1506.05825.

    Article  ADS  Google Scholar 

  342. R. Arnold et al. (NEMO–3Collab.), “Search for neutrinoless double-beta decay of with the NEMO-3 detector,” Phys. Rev. D 89, 111101 (2014); http://www.arXiv.org/abs/1311.5695.

    Article  ADS  Google Scholar 

  343. M. Agostini, “Results on decay with emission of two neutrinos or Majorons in Ge from GERDA Phase I,” Eur. Phys. J. C 75, 416 (2015); http://www.arXiv.org/abs/1501.02345.

    Article  ADS  Google Scholar 

  344. M. Agostini et al. (GERDA Collab.), “Improvement of the energy resolution via an optimized digital signal processing in GERDA Phase I,” Eur. Phys. J. C 75, 255 (2015); http://www.arXiv.org/abs/1502.04392.

    Article  ADS  Google Scholar 

  345. M. Agostini et al. (GERDA Collab.), “Results on neutrinoless double-decay of Ge from Phase I of the GERDA experiment,” Phys. Rev. Lett. 111, 122503 (2013); http://www.arXiv.org/abs/1307.47204720.

    Article  ADS  Google Scholar 

  346. H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, “Why is the conclusion of the GERDA experiment not justified,” Phys. Part. Nucl. Lett. 10, 704–709 (2013); http://www.arXiv.org/abs/1308.2524.

    Article  Google Scholar 

  347. H. V. Klapdor-Kleingrothaus, “Lessons after the evidence for neutrinoless double beta decay: The next step,” Int. J. Mod. Phys. E 17, 505–517 (2008).

    Article  ADS  Google Scholar 

  348. H. V. Klapdor-Kleingrothaus and I. V. Krivosheina, “The evidence for the observation of 0nu beta beta decay: The identification of 0nu beta beta events from the full spectra,” Mod. Phys. Lett. A 21, 1547–1566 (2006).

    Article  ADS  Google Scholar 

  349. H. V. Klapdor-Kleingrothaus, I. V. Krivosheina, A. Dietz, and O. Chkvorets, “Search for neutrinoless double beta decay with enriched Ge-76 in Gran Sasso 1990–2003,” Phys. Lett. B 586, 198–212 (2004); http://www.arXiv.org/abs/hep-ph/0404088.

    Article  ADS  Google Scholar 

  350. E. Armengaud et al. (EDELWEISS Collab.), “Background studies for the EDELWEISS dark matter experiment,” Astropart. Phys. 47, 1–9 (2013); http://www.arXiv.org/abs/1305.3628.

    Article  ADS  Google Scholar 

  351. E. Armengaud et al., “Axion searches with the EDELWEISS-II experiment,” J. Cosmol. Astropart. Phys. 1311, 067 (2013); http://www.arXiv.org/abs/1307.1488.

    Article  ADS  Google Scholar 

  352. T. Alexander et al. (DarkSide Collab.), “DarkSide search for dark matter,” J. Instrum. 8, C11021 (2013).

    Article  Google Scholar 

  353. P. Agnes et al. (DarkSide Collab.), “First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso,” Phys. Lett. B 743, 456–466 (2015); http://www.arXiv.org/abs/1410.0653.

    Article  ADS  Google Scholar 

  354. V. A. Bednyakov, D. V. Naumov, and O. Yu. Smirnov, “Neutrino physics and JINR,” Phys. Usp. 59, 225–253 (2016). 100Mo ββ 76 β 76

    Article  ADS  Google Scholar 

  355. G. Angloher et al. (EURECA Collab.), “EURECA conceptual design report,” Phys. Dark Univ. 3, 41–74 (2014).

    Article  Google Scholar 

  356. B. Pontecorvo, “Neutrino experiments and the problem of conservation of leptonic charge,” Sov. Phys. JETP 26, 984–988 (1968).

    ADS  Google Scholar 

  357. V. N. Gribov and B. Pontecorvo, “Neutrino astronomy and lepton charge,” Phys. Lett. A. 28, 493 (1969).

    Article  Google Scholar 

  358. E. P. Hincks and B. Pontecorvo, “On the absence of photons among the decay products of the 2.2-microsecond meson,” Can. J. Res. 28a, 29–43 (1950).

    Article  Google Scholar 

  359. E. P. Hincks and B. Pontecorvo, “Search for gammaradiation in the 2.2-microsecond meson decay process,” Phys. Rev. 73, 257–258 (1948).

    Article  ADS  Google Scholar 

  360. V. A. Baranov et al., “Search for decay,” Sov. J. Nucl. Phys. 53, 802–807 (1991).

    Google Scholar 

  361. V. A. Gordeev et al., “Experimental study of muonium anti-muonium conversion at the Phasotron of the Joint Institute for Nuclear Research,” JETP Lett. 57, 270–275 (1993).

    ADS  Google Scholar 

  362. V. A. Gordeev et al., “Analysis of results of an experimental study of the probability for muonium antimuonium conversion and of background processes in a separated beam of 'surface' muons of the Phasotron of the Nuclear Reactions Laboratory of the Joint Institute for Nuclear Research,” JETP Lett. 59, 589–595 (1994).

    ADS  MathSciNet  Google Scholar 

  363. M. Venturini (MEG Collab.), “Results and perspectives of the MEG and MEG II experiments,” Nuovo Cimento C 038, 12 (2015).

    ADS  Google Scholar 

  364. A. M. Baldini et al. (MEG Collab.), “Measurement of the radiative decay of polarized muons in the MEG experiment,” Eur. Phys. J. C 76, 108 (2016); http://www.arXiv.org/abs/1312.3217.

    Article  ADS  Google Scholar 

  365. J. Grange (E989Collab.), “The new muon g-2 experiment at Fermilab,” in PoS NUFACT2014, 099 (2015); http://www.arXiv.org/abs/1501.03040.

  366. N. Atanov et al. (Mu2e Collab.), “Measurement of time resolution of the Mu2e LYSO calorimeter prototype,” Nucl. Instrum. Methods A 812, 104–111 (2016); http://www.arXiv.org/abs/1509.04468.

    Article  ADS  Google Scholar 

  367. D. Brown (Mu2e Collab.), “The Mu2e experiment: Searching for muon to electron conversion,” Nucl. Part. Phys. Proc. 260, 151–154 (2015).

    Article  Google Scholar 

  368. L. Bartoszek et al. (Mu2e Collab.), “Mu2e technical design report,” http://www.arXiv.org/abs/1501.05241.

  369. Y. Nakazawa, Y. Kuno, A. Sato, H. Sakamoto, H. Yoshida, Z. Jie, C. Wu, H. Katayama, and T. S. Wong (COMET Collab.), “Experiment searching for muon to electron conversion,” in PoS FPCP2015, 058 (2015).

  370. Y. Yuan (COMET Collab.), “Search for muon to electron conversion at J-PARC,” Int. J. Mod. Phys. Conf. Ser. 31, 1460302 (2014).

    Article  Google Scholar 

  371. Y. G. Cui et al. (COMET Collab.), “Conceptual design report for experimental search for lepton flavor violating–conversion at sensitivity of 10–16 with a slow-extracted bunched proton beam (COMET),” KEK-2009-10.

  372. S. Ahmad et al., “Search for muon–electron and muon–positron conversion,” Phys. Rev. D 38, 2102 (1988).

    Article  ADS  Google Scholar 

  373. P. C. Divari, J. D. Vergados, and T. S. Kosmas, “Exotic muon to positron conversion in nuclei: Partial transition sum evaluation by using shell model,” Part. Nucl. Lett. 104, 53–70 (2001).

    Google Scholar 

  374. J. M. Berryman, A. de Gouvea, K. J. Kelly, and A. Kobach, “On lepton-number-violating searches for muon to positron conversion.” http://www.arXiv.org/abs/1611.00032.

  375. L. Okun, B. Pontecorvo, and C. Rubbia, “Four-lepton decays of charged pions and kaons and possible interactions of leptons,” Rom. J. Phys. 11, 819–824 (1966).

    Google Scholar 

  376. M. P. Balandin, B. D. Balashov, V. A. Zhukov, B. M. Pontecorvo, and G. I. Selivanov, “The possibility of the formation of lambda 0-particles by protons with energies up to 700MeV,” Sov. Phys. JETP 2, 98 (1956).

    Google Scholar 

  377. B. Pontecorvo, “On new strange particles,” Sov. Phys. JETP 5, 1192 (1960).

    Google Scholar 

  378. N. L. Rusakovich and V. B. Flyagin, “Measurement of the K meson decay constants at the Hyperon setup at the Serpukhov proton synchrotron U-70 and the latest world data,” Phys. Part. Nucl. Lett. 1, 29–33 (2004).

    Google Scholar 

  379. V. Yu. Batusov et al., “Measurement of the Dalitz plot slope parameters for decay,” Nucl. Phys. B 516, 3–12 (1998).

    Article  ADS  Google Scholar 

  380. A. M. Blik et al., “Upper limit for the branching ratio of decay,” Phys. Lett. B 334, 234–236 (1994).

    Article  ADS  Google Scholar 

  381. A. G. Asmolov et al. (IFVE–JINR Collab.), “The spectrometric complex HYPERON for investigation of rare K meson decays,” Instrum. Exp. Tech. 37, 263–270 (1994).

    Google Scholar 

  382. A. N. Aleev et al. (EXCHARM Collab.), “Spin alignment of -mesons produced in neutron carbon interactions,” Phys. Lett. B 485, 334–340 (2000); http://www.arXiv.org/abs/hep-ex/0002054.

    Article  ADS  Google Scholar 

  383. A. N. Aleev et al. (EXCHARM Collab.), “A measurement of the transverse polarization of Λ hyperons produced in n C reactions in the EXCHARM experiment,” Eur. Phys. J. C 13, 427–432 (2000).

    Article  ADS  Google Scholar 

  384. N. L. Rusakovich and V. B. Flyagin, “The most recent studies of and decays at the IHEP proton synchrotron U-70,” Phys. Part. Nucl. Lett. 2, 82–84 (2005).

    Google Scholar 

  385. R. Ogata et al. (E391a Collab.), “Study of the decay,” Phys. Rev. D 84, 052009 (2011); http://www.arXiv.org/abs/1106.3404.

    Article  ADS  Google Scholar 

  386. Y. C. Tung et al. (E391a Collab.), “Search for the decay,” Phys. Rev. D 83, 031101 (2011); http://www.arXiv.org/abs/1011.4403.

    Article  ADS  Google Scholar 

  387. A. S. Kurilin et al., “Search for the decay at the INEP U-70 accelerator: The KLOD project,” Phys. Part. Nucl. Lett. 7, 21–26 (2010).

    Article  Google Scholar 

  388. J. K. Ahn et al. (E391a Collab.), “Experimental study of the decay,” Phys. Rev. D 81, 072004 (2010); http://www.arXiv.org/abs/0911.4789.

    Article  ADS  Google Scholar 

  389. E. O. Okonov, “Tables of experimental data: Mass differences of and mesons,” Sov. Phys. Usp. 11, 521 (1969).

    Article  ADS  Google Scholar 

  390. D. Neagu, E. O. Okonov, N. I. Petrov, A. M. Rosanova, and V. A. Rusakov, “Decay properties of K-2-0 mesons,” Phys. Rev. Lett. 6, 552–553 (1961).

    Article  ADS  Google Scholar 

  391. R. Piandani, (NA48/2, NA62Collab.), “ChPT test at NA48 and NA62 experiment at CERN,” Nucl. Part. Phys. Proc. 258-259, 75–79 (2015).

    Google Scholar 

  392. C. Lazzeroni et al. (NA62Collab.), “Test of lepton flavour universality in decays,” Phys. Lett. B 698, 105–114 (2011); http://www.arXiv.org/abs/1101.4805.

    Article  ADS  Google Scholar 

  393. C. Lazzeroni et al. (NA62Collab.), “Precision measurement of the ratio of the charged kaon leptonic decay rates,” Phys. Lett. B 719, 326–336 (2013); http://www.arXiv.org/abs/1212.4012.

    Article  ADS  Google Scholar 

  394. A. Ceccucci, E. Goudzovski, V. Kekelidze, D. Madigozhin, and I. Potrebenikov, “Kaon decay studies at CERN SPS in the last decades,” Phys. Part. Nucl. 47, 567–590 (2016).

    Article  Google Scholar 

  395. M. Adamovich et al. (BEATRICE Collab.), “Search for the decay ”Phys. Lett. B 353, 563–570 (1995).

    Article  ADS  Google Scholar 

  396. D. V. Naumov et al. (NOMAD Collab.), “Measurement of and anti-polarization in muon-neutrino CC in NOMAD,” Acta Phys. Polon. B 33, 3791–3796 (2002); http://www.arXiv.org/abs/hep-ph/0206032.

    ADS  Google Scholar 

  397. A. Abulencia et al. (CDF Collab.), “Measurement of the oscillation frequency,” Phys. Rev. Lett. 97, 062003 (2006); http://www.arXiv.org/abs/hepex/0606027.

    Article  ADS  Google Scholar 

  398. A. J. Buras, F. Schwab, and S. Uhlig, “Waiting for precise measurements of and,” Rev. Mod. Phys. 80, 965–1007 (2008); http://www.arXiv.org/abs/hep-ph/0405132.

    Article  ADS  Google Scholar 

  399. N. N. Agapov, V. D. Kekelidze, A. D. Kovalenko, R. Lednitsky, V. A. Matveev, I. N. Meshkov, V. A. Nikitin, Y. K. Potrebennikov, A. S. Sorin, and G. V. Trubnikov, “Relativistic nuclear physics at JINR: From the synchrophasotron to the NICA collider,” Phys. Usp. 59, 383–402 (2016).

    Article  ADS  Google Scholar 

  400. V. D. Kekelidze, R. Lednicky, V. A. Matveev, I. N. Meshkov, A. S. Sorin, and G. V. Trubnikov, “NICA project at JINR,” Springer Proc. Phys. 174, 67–73 (2016).

    Article  Google Scholar 

  401. A. N. Sissakian and A. S. Sorin (NICA Collab.), “The Nuclotron-based ion collider facility (NICA) at JINR: New prospects for heavy ion collisions and spin physics,” J. Phys. G 36, 064069 (2009).

    Article  ADS  Google Scholar 

  402. A. N. Sissakian, V. D. Kekelidze, and A. S. Sorin (NICA Collab.), “The Nuclotron-based Ion Collider fAcility at the Joint Institute for Nuclear Research,” Nucl. Phys. A 827, 630–637 (2009).

    Article  ADS  Google Scholar 

  403. D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, “Chiral magnetic and vortical effects in high-energynuclear collisions–A status report,” Prog. Part. Nucl. Phys. 88, 1–28 (2016); http://www.arXiv.org/abs/1511.04050.

    Article  ADS  Google Scholar 

  404. J. Liao, “Chiral magnetic effect in heavy ion collisions,” Nucl. Phys. A 956, 99–106 (2016); http://www.arXiv.org/abs/1601.00381.

    Article  ADS  Google Scholar 

  405. N. Chang et al., “Physics perspectives of heavy-ion collisions at very high energy,” Sci. China Phys. Mech. Astron. 59, 621001 (2016); http://www.arXiv.org/abs/1510.05754.

    Article  Google Scholar 

  406. E. Shuryak, “Heavy ion collisions: Achievements and challenges.” http://www.arXiv.org/abs/1412.8393.

  407. D. Suvarieva, M. Ilieva, M. Kapishin, V. Kolesnikov, V. Vasendina, and A. Zinchenko, “A feasibility study of hyperon and hypernuclei reconstruction at NICA with BMN detector,” J. Phys. Conf. Ser. 668, 012121 (2016).

    Article  Google Scholar 

  408. V. I. Yurevich et al., “Beam tests of Cherenkov detector modules with picosecond time resolution for start and L0 trigger detectors of MPD and BMN experiments,” Phys. Part. Nucl. Lett. 12, 778–785 (2015).

    Article  Google Scholar 

  409. A. Zinchenko (BM@N Collab.), “Relativistic heavy ion physics at JINR: Status of the BMN and MPD experiments,” in Proc. 20th International Conference on Particles and Nuclei (PANIC 14) (2014), pp. 220–223.

    Google Scholar 

  410. P. N. Batyuk, V. D. Kekelidze, V. I. Kolesnikov, O. V. Rogachevsky, A. S. Sorin, and V. V. Voronyuk, “Feasibility study of heavy ion physics program at NICA,” Phys. Part. Nucl. 47, 540–566 (2016).

    Article  Google Scholar 

  411. J. Adam et al. (ALICE Collab.), “Azimuthal anisotropy of charged jet production in xxxx = 2.76TeV Pb-Pb collisions,” Phys. Lett. B 753, 511–525 (2016); http://www.arXiv.org/abs/1509.07334.

    Article  ADS  Google Scholar 

  412. J. Adam et al. (ALICE Collab.), “Measurement of jet suppression in central Pb-Pb collisions at xxxx = 2.76TeV,” Phys. Lett. B 746, 1–14 (2015); http://www.arXiv.org/abs/1502.01689.

    Article  ADS  Google Scholar 

  413. L. Adamczyk et al. (STAR Collab.), “Measurements of dielectron production in Au collisions at xxxx = 200GeV from the STAR experiment,” Phys. Rev. C 92, 024912 (2015); http://www.arXiv.org/abs/1504.01317.

    Article  ADS  Google Scholar 

  414. L. Adamczyk et al. (STAR Collab.), “Observation of meson nuclear modifications in Au + Au collisions at xxxx = 200 GeV,” Phys. Rev. Lett. 113, 142301 (2014); http://www.arXiv.org/abs/1404.6185.

    Article  ADS  Google Scholar 

  415. P. Kurilkin, V. Ladygin, A. Malakhov, and P. Senger, “Compressed baryonic matter at FAIR: JINR participation,” Int. J. Mod. Phys. Conf. Ser. 39, 1560098 (2015).

    Article  Google Scholar 

  416. A. I. Malakhov, “Asymptotic properties of the nuclear matter,” in PoS Baldin-ISHEPP-XXI, 053 (2012).

    Google Scholar 

  417. T. A. Vasiliev, V. P. Ladygin, and A. I. Malakhov, “Study of high p(T) pion production with CBM at SIS 100 energies,” Phys. Part. Nucl. Lett. 8, 1090–1092 (2011).

    Article  Google Scholar 

  418. I. A. Savin, A. V. Efremov, D. V. Peshekhonov, A. D. Kovalenko, O. V. Teryaev, O. Yu. Shevchenko, A. P. Nagajcev, A. V. Guskov, V. V. Kukhtin, and N. D. Topilin, “Spin Physics Experiments at NICASPD with polarized proton and deuteron beams,” EPJ sNN sNN + sNN D0 sNN Web Conf. 85, 02039 (2015); http://www.arXiv.org/abs/1408.3959.

    Google Scholar 

  419. V. B. Flyagin et al., “Study of the reaction at the effective neutron energy of 600MeV and the charge independence hypothesis,” Zh. Eksp. Teor. Fiz. 32, 854 (1958).

    Google Scholar 

  420. B. M. Golovin and V. P. Dzhelepov, “An investigation of elastic scattering of 590MeV neutrons by neutrons,” Sov. Phys. JETP 31, 194 (1956).

    Google Scholar 

  421. B. Z. Kopeliovich, “Effects of color screening in hadron nucleus interactions,” Fiz. Elem. Chastits At. Yadra 21, 117–171 (1990).

    Google Scholar 

  422. B. Z. Kopeliovich, L. I. Lapidus, and A. B. Zamolodchikov, “Dynamics of color in hadron diffraction on nuclei,” JETP Lett. 33, 595–597 (1981).

    ADS  Google Scholar 

  423. V. V. Filchenkov, “Physical applications of muon catalysis: Muon capture in hydrogen,” Phys. Part. Nucl. 47, 591–626 (2016).

    Article  Google Scholar 

  424. G. V. Kulin, A. I. Frank, S. V. Goryunov, D. V. Kustov, P. Geltenbort, M. Jentschel, A. N. Strepetov, and V. A. Bushuev, “Spectrometer for new gravitational experiment with UCN,” Nucl. Instrum. Methods A 792, 38–46 (2015); http://www.arXiv.org/abs/1502.03243.

    Article  ADS  Google Scholar 

  425. E. V. Lychagin, D. P. Kozlenko, P. V. Sedyshev, and V. N. Shvetsov, “Neutron physics at the JINR: 60 years of the I. M. Frank Laboratory of Neutron Physics,” Phys. Usp. 59, 254–263 (2016).

    Article  ADS  Google Scholar 

  426. A. Guskov (COMPASS Collab.), “Search for exclusive photoproduction of at COMPASS,” in Proc. 2015European Physical Society Conference on High Energy Physics (EPS-HEP 2015), http://www.arXiv.org/abs/1511.02832.

    Google Scholar 

  427. A. Guskov (COMPASS Collab.), “Measurement of the charged-pion polarisability at COMPASS,” in Proc. 2015European Physical Society Conference on High Energy Physics (EPS-HEP 2015), http://www.arXiv.org/abs/1511.02816.

    Google Scholar 

  428. O. Kouznetsov (COMPASS Collab.), “The spin physics results from COMPASS,” AIP Conf. Proc. 1654, 060004 (2015).

    Article  Google Scholar 

  429. D. Peshekhonov (COMPASS Collab.), “Longitudinal spin physics results from COMPASS,” Nucl. Phys. Proc. 219–220, 52–55 (2011).

    Article  ADS  Google Scholar 

  430. F. Nerling (COMPASS Collab.), “Highlights from the COMPASS experiment at CERN–Hadron spectroscopy and excitations,” http://www.arXiv.org/abs/1601.05025.

  431. M. Ablikim et al. (BESIII Collab.), “Study of decaying into φ,” Phys. Rev. D 91, 112008 (2015); http://www.arXiv.org/abs/1503.04699.

    Article  ADS  Google Scholar 

  432. M. Ablikim et al. (BESIII Collab.), “Confirmation of a charged charmonium-like state in with double tag,” Phys. Rev. D 92, 092006 (2015); http://www.arXiv.org/abs/1509.01398.

    Article  ADS  Google Scholar 

  433. M. Ablikim et al. (BESIII Collab.), “Measurement of the form factors in the decay and search for the decay,” Phys. Rev. D 92, 071101 (2015); http://www.arXiv.org/abs/1508.00151.

    Article  ADS  Google Scholar 

  434. D. Dutta (PANDA Collab.), “Physics program of PANDA experiment at FAIR,” Nucl. Phys. A 862–863, 231–237 (2011).

    Article  ADS  Google Scholar 

  435. M. Destefanis (PANDA Collab.), “Drell-Yan studies in ppbar reactions at FAIR,” Phys. Part. Nucl. 44, 886–889 (2013).

    Article  Google Scholar 

  436. A. Sanchez Lorente (PANDA Collab.), “Hypernuclear physics studies of the PANDA experiment at FAIR,” Hyperfine Interact. 229, 45–51 (2014).

    Article  ADS  Google Scholar 

  437. S. A. Kulikov and V. I. Prikhodko, “New generation of data acquisition and data storage systems of the IBR-2 reactor spectrometers complex,” Phys. Part. Nucl. 47, 702–710 (2016).

    Article  Google Scholar 

  438. V. L. Aksenov and A. M. Balagurov, “Neutron diffraction on pulsed sources,” Phys. Usp. 59, 279–303 (2016).

    Article  ADS  Google Scholar 

  439. S. A. Manoshin, A. V. Belushkin, and A. I. Ioffe, “Development of the methods for simulating the neutron spectrometers and neutron-scattering experiments,” Phys. Part. Nucl. 47, 667–680 (2016).

    Article  Google Scholar 

  440. E. V. Lychagin, V. A. Mityukhlyaev, A. Yu. Muzychka, G. V. Nekhaev, V. V. Nesvizhevsky, M. S. Onegin, E. I. Sharapov, and A. V. Strelkov, “UCN sources at external beams of thermal neutrons. An example of PIK reactor,” Nucl. Instrum. Methods A 823, 47–55 (2016); http://www.arXiv.org/abs/1511.07770.

    Article  ADS  Google Scholar 

  441. A. I. Frank, “Ultracold neutrons and the interaction of waves with moving matter,” Phys. Part. Nucl. 47, 647–666 (2016).

    Article  Google Scholar 

  442. L. V. Grigorenko, M. S. Golovkov, S. A. Krupko, S. I. Sidorchuk, G. M. Ter-Akopian, A. S. Fomichev, and V. Chudoba, “Studies of light exotic nuclei in the vicinity of neutron and proton drip lines at FLNR JINR,” Phys. Usp. 59, 321–366 (2016).

    Article  ADS  Google Scholar 

  443. V. Matveev and N. Russakovich, Seven-Year Plan for the Development of JINR 2017–2023 (JINR, Dubna, 2016).

    Google Scholar 

  444. V. L. Aksenov, A. M. Balagurov, and D. P. Kozlenko, “Condensed matter research at the modernized IBR-2 reactor: From functional materials to nano-biotechnologies,” Phys. Part. Nucl. 47, 627–646 (2016).

    Article  Google Scholar 

  445. E. A. Bergin, “Astrobiology: An astronomer’s perspective,” AIP Conf. Proc. 1638, 5 (2014); http://www.arXiv.org/abs/1309.4729.

    Article  ADS  Google Scholar 

  446. E. A. Krasavin, “Radiobiological research at JINR accelerators,” Phys. Usp. 186, 435–443 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bednyakov.

Additional information

Original Russian Text © V.A. Bednyakov, N.A. Russakovich, 2018, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2018, Vol. 49, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bednyakov, V.A., Russakovich, N.A. The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles. Phys. Part. Nuclei 49, 331–373 (2018). https://doi.org/10.1134/S1063779618030024

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779618030024

Navigation