Skip to main content
Log in

The low-energy N = 4 SYM effective action in diverse harmonic superspaces

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We review various superspace approaches to the description of the low-energy effective action in N = 4 super Yang–Mills (SYM) theory. We consider the four-derivative part of the low-energy effective action in the Coulomb branch. The typical components of this effective action are the gauge field F 4/X 4 and the scalar field Wess–Zumino terms. We construct N = 4 supersymmetric completions of these terms in the framework of different harmonic superspaces supporting N = 2,3,4 supersymmetries. These approaches are complementary to each other in the sense that they make manifest different subgroups of the total SU(4) R-symmetry group. We show that the effective action acquires an extremely simple form in those superspaces which manifest the non-anomalous maximal subgroups of SU(4). The common characteristic feature of our construction is that we restore the superfield effective actions exclusively by employing the N = 4 supersymmetry and/or superconformal PSU(2, 2| 4) symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Brink, J. H. Schwarz, and J. Scherk, “Supersymmetric Yang-Mills theories,” Nucl. Phys. B 121, 77 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  2. M. T. Grisaru, M. Rocek, and W. Siegel, “Zero value for the three-loop function in N = 4 supersymmetric Yang–Mills theory,” Phys. Rev. Lett. 45, 1063 (1980).

    Article  ADS  Google Scholar 

  3. L. V. Avdeev, O. V. Tarasov, and A. A. Vladimirov, “Vanishing of the three-loop charge renormalization function in a supersymmetric gauge theory,” Phys. Lett. B 96, 94 (1980).

    Article  ADS  Google Scholar 

  4. W. E. Caswell and D. Zanon, “Zero three-loop beta function in the N = 4 supersymmetric Yang-Mills theory,” Nucl. Phys. B 182, 125 (1981).

    Article  ADS  Google Scholar 

  5. M. F. Sohnius and P. C. West, “Conformal invariance in N = 4 supersymmetric Yang–Mills theory,” Phys. Lett. B 100, 245 (1981).

    Article  ADS  Google Scholar 

  6. J. M. Maldacena, “The large N limit of superconformal field theories and supergravity,” Int. J. Theor. Phys. 38, 1113 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998); hep-th/9711200.

  8. S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge theory correlators from noncritical string theory,” Phys. Lett. B 428, 105 (1998); hep-th/9802109.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998); hep-th/9802150.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field theories, string theory and gravity,” Phys. Rep. 323, 183 (2000); hepth/9905111.

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Becker, M. Becker, and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction (Univ. Pr., Cambridge, UK, 2007), p. 739.

    MATH  Google Scholar 

  12. A. A. Tseytlin, “Born-Infeld action, supersymmetry and string theory,” in The Many Faces of the Superworld, Ed. by M. A. Shifman (World Scientific, Singapore, 2000), pp. 417–452; hep-th/9908105.

    Chapter  Google Scholar 

  13. M. Dine and N. Seiberg, “Comments on higher derivative operators in some SUSY field theories,” Phys. Lett. B 409, 239 (1997); hep-th/9705057.

    Article  ADS  MathSciNet  Google Scholar 

  14. N. Seiberg, “Notes on theories with 16 supercharges,” Nucl. Phys. Proc. Suppl. 67, 158 (1998); hepth/9705117.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. B. de Wit, M. T. Grisaru, and M. Rocek, “Nonholomorphic corrections to the one-loop N = 2 super Yang-Mills action,” Phys. Lett. B 374, 297 (1996); hep-th/9601115.

    Article  ADS  MathSciNet  Google Scholar 

  16. U. Lindström, F. Gonzalez-Rey, M. Rocek, and R. von Unge, “On N = 2 low-energy effective actions,” Phys. Lett. B 388, 581 (1996); hep-th/9607089.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. F. Gonzalez-Rey and M. Rocek, “Nonholomorphic N = 2 terms in N = 4 SYM: 1-loop calculation in N = 2 superspace,” Phys. Lett. B 434, 303 (1998); hep-th/9804010.

    Article  ADS  MathSciNet  Google Scholar 

  18. I. L. Buchbinder, E. I. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, “The background field method for N= 2 super Yang-Mills theories in harmonic superspace,” Phys. Lett. B 417, 61 (1998); hep-th/9704214.

    Article  ADS  MathSciNet  Google Scholar 

  19. I. L. Buchbinder and S. M. Kuzenko, “Comments on the background field method in harmonic superspace: Non-holomorphic corrections in N = 4 SYM,” Mod. Phys. Lett. A 13, 1623 (1998); hep-th/9804168.

    Article  ADS  MathSciNet  Google Scholar 

  20. A. A. Tseytlin and K. Zarembo, “Magnetic interactions of D-branes and Wess-Zumino terms in super Yang-Mills effective actions,” Phys. Lett. B 474, 95 (2000); hep-th/9911246.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. K. A. Intriligator, “Anomaly matching and a Hopf- Wess-Zumino term in 6d, N = (2, 0) field theories,” Nucl. Phys. B 581, 257 (2000); hep-th/0001205.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. I. L. Buchbinder and E. A. Ivanov, “Complete N = 4 structure of low-energy effective action in N = 4 super Yang-Mills theories,” Phys. Lett. B 524, 208 (2002); hep-th/0111062.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic superspace: Key to N = 2 supersymmetry theories,” JETP Lett. 40, 912 (1984).

    ADS  Google Scholar 

  24. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “Unconstrained N = 2 matter, Yang- Mills and supergravity theories in harmonic superspace,” Class. Quant. Grav. 1, 469 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  25. D. V. Belyaev and I. B. Samsonov, “Wess–Zumino term in the N = 4 SYM effective action revisited,” JHEP 1104, 112 (2011); arXiv:1103.5070 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. D. V. Belyaev and I. B. Samsonov, “Bi-harmonic superspace for N = 4 d = 4 super Yang-Mills,” JHEP 09, 056 (2011); arXiv:1106.0611 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. I. L. Buchbinder, E. A. Ivanov, I. B. Samsonov, and B. M. Zupnik, “Superconformal N = 3 SYM lowenergy effective action,” JHEP 1201, 001 (2012); arXiv:1111.4145 [hep-th].

    Article  ADS  MATH  Google Scholar 

  28. I. L. Buchbinder, E. A. Ivanov, and A. Y. Petrov, “Complete low-energy effective action in N = 4 SYM: A direct N = 2 supergraph calculation,” Nucl. Phys. B 653, 64 (2003); hep-th/0210241.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. A. T. Banin, I. L. Buchbinder, and N. G. Pletnev, “One-loop effective action for N = 4 SYM theory in the hypermultiplet sector: Leading low-energy approximation and beyond,” Phys. Rev. D 68, 065024 (2003); hep-th/0304046.

    Article  ADS  Google Scholar 

  30. I. L. Buchbinder and N. G. Pletnev, “Construction of one-loop N = 4 SYM effective action on the mixed branch in the harmonic superspace approach,” JHEP 0509, 073 (2005); hep-th/0504216.

    Article  ADS  Google Scholar 

  31. I. L. Buchbinder, E. A. Ivanov, and N. G. Pletnev, “Superfield approach to construction of the effective action in quantum field theory with extended supersymmetry,” Phys. Part. Nucl. 47, No. 3, 291 (2016).

    Article  Google Scholar 

  32. P. Fayet, “Spontaneous generation of massive multiplets and central charges in extended supersymmetric theories,” Nucl. Phys. B 149, 137 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  33. I. L. Buchbinder, S. M. Kuzenko, and B. A. Ovrut, “On the D = 4, N = 2 non-renormalization theorem,” Phys. Lett. B 433, 335 (1998); hep-th/9710142.

    Article  ADS  Google Scholar 

  34. I. L. Buchbinder, N. G. Pletnev, and K. V. Stepanyantz, “Manifestly N = 2 supersymmetric regularization for N = 2 supersymmetric field theories,” Phys. Lett. B 751, 434 (2015); arXiv:1509.08055 [hep-th].

    Article  ADS  Google Scholar 

  35. N. Dorey, V. V. Khoze, M. P. Mattis, M. J. Slater, and W. A. Weir, “Instantons, higher derivative terms, and non-renormalization theorems in supersymmetric gauge theories,” Phys. Lett. B 408, 213 (1997); hepth/9706007.

    Article  ADS  MathSciNet  Google Scholar 

  36. M. Henningson, “Extended superspace, higher derivatives and SL(2, Z) duality,” Nucl. Phys. B 458, 445 (1996); hep-th/9507135.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. A. Patani, M. Schlindwein, and Q. Shafi, “Topological charges in field theory,” J. Phys. A 9, 1513 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. E. Braaten, T. L. Curtright, and C. K. Zachos, “Torsion and geometrostasis in nonlinear sigma models,” Nucl. Phys. B 260, 630 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  39. I. L. Buchbinder and S. M. Kuzenko, Ideas and Methods of Supersymmetry and Supergravity or a Walk through Superspace (IOP, Bristol, UK, 1995), p. 640.

    Book  MATH  Google Scholar 

  40. S. J. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, “Superspace, or one thousand and one lessons in supersymmetry,” Front. Phys. 58, 1 (1983); hepth/0108200.

    MATH  Google Scholar 

  41. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic supergraphs: Green functions,” Class. Quant. Grav. 2, 601 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. A. Karlhede, U. Lindström, and M. Rocek, “Selfinteracting tensor multiplets in N = 2 superspace,” Phys. Lett. B 147, 297 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  43. U. Lindström and M. Rocek, “New hyperkähler metrics and new supermultiplets,” Commun. Math. Phys. 115, 21 (1988).

    Article  ADS  MATH  Google Scholar 

  44. U. Lindström and M. Rocek, “N = 2 super Yang-Mills theory in projective superspace,” Commun. Math. Phys. 128, 191 (1990).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. S. M. Kuzenko, “Projective superspace as a double punctured harmonic superspace,” Int. J. Mod. Phys. A 14, 1737 (1999); hep-th/9806147.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. A. S. Galperin, E. A. Ivanov, V. I. Ogievetsky, and E. S. Sokatchev, Harmonic Superspace (Univ. Pr., Cambridge, UK, 2001), p. 306.

    Book  MATH  Google Scholar 

  47. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “N = 3 supersymmetric gauge theory,” Phys. Lett. B 151, 215 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Galperin, E. Ivanov, S. Kalitzin, V. Ogievetsky, and E. Sokatchev, “Unconstrained off-shell N = 3 supersymmetric Yang–Mills theory,” Class. Quant. Grav. 2, 155 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. E. Witten, “Global aspects of current algebra,” Nucl. Phys. B 223, 422 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  50. L. Alvarez-Gaumé and P. H. Ginsparg, “The structure of gauge and gravitational anomalies,” Annals Phys. 161, 423 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. L. Alvarez-Gaumé and P. H. Ginsparg, “Erratum,” Annals Phys. 171, 233 (1986).

    Article  Google Scholar 

  52. J. Wess and B. Zumino, “Consequences of anomalous Ward identities,” Phys. Lett. B 37, 95 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  53. G. ’t Hooft, “Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking,” NATO Adv. Study Inst., B: Phys. 59, 135 (1980).

    Google Scholar 

  54. S. Weinberg, The Quantum Theory of Fields, Vol. 2: Modern Applications (Univ. Pr., Cambridge, UK, 1996), p. 489.

    Book  MATH  Google Scholar 

  55. A. V. Manohar, “Wess–Zumino terms in supersymmetric gauge theories,” Phys. Rev. Lett. 81, 1558 (1998); hep-th/9805144.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. P. S. Howe, E. Sokatchev, and P. C. West, “Threepoint functions and N = 4 Yang-Mills,” Phys. Lett. B 444, 431 (1998); hep-th/9808162.

    Article  Google Scholar 

  57. E. S. Fradkin and A. A. Tseytlin, “One-loop beta function in conformal supergravities,” Nucl. Phys. B 203, 157 (1982).

    Article  ADS  Google Scholar 

  58. E. S. Fradkin and A. A. Tseytlin, “Conformal anomaly in Weyl theory and anomaly free superconformal theories,” Phys. Lett. B 134, 187 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. A. Galperin, E. Ivanov, and V. Ogievetsky, “Grassmann analyticity and extended supersymmetry,” Pisma ZhETF 33, 176 (1981).

    Google Scholar 

  60. M. F. Sohnius, “Supersymmetry and central charges,” Nucl. Phys. B 138, 109 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  61. M. F. Sohnius, “Bianchi identities for supersymmetric gauge theories,” Nucl. Phys. B 136, 461 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  62. B. M. Zupnik, “Solution of constraints of the supergauge theory in SU(2)/U(1) harmonic superspace,” Theor. Mat. Fiz. 69, 207 (1986).

    MathSciNet  Google Scholar 

  63. B. M. Zupnik, “The action of the supersymmetric N = 2 gauge theory in harmonic superspace,” Phys. Lett. B 183, 175 (1987).

    Article  ADS  MathSciNet  Google Scholar 

  64. A. Galperin, E. Ivanov, V. Ogievetsky, and E. Sokatchev, “Harmonic supergraphs: Feynman rules and examples,” Class. Quant. Grav. 2, 617 (1985).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. E. I. Buchbinder, I. L. Buchbinder, E. A. Ivanov, S. M. Kuzenko, and B. A. Ovrut, “Low-energy effective action in N = 2 supersymmetric field theories,” Phys. Part. Nucl. 32, 641 (2001).

    Google Scholar 

  66. P. C. Argyres, A. M. Awad, G. A. Braun, and F. P. Esposito, “Higher derivative terms in N = 2 supersymmetric effective actions,” JHEP 0307, 060 (2003); hep-th/0306118.

    Article  ADS  MathSciNet  Google Scholar 

  67. I. L. Buchbinder and N. G. Pletnev, “Hypermultiplet dependence of one-loop effective action in the N = 2 superconformal theories,” JHEP 0704, 096 (2007); hep-th/0611145.

    Article  ADS  MathSciNet  Google Scholar 

  68. F. Delduc and J. McCabe, “The quantization of super Yang-Mills off-shell in harmonic superspace,” Class. Quant. Grav. 6, 233 (1989).

    Article  ADS  MATH  Google Scholar 

  69. E. A. Ivanov and B. M. Zupnik, “N = 3 supersymmetric Born-Infeld theory,” Nucl. Phys. B 618, 3 (2001); hep-th/0110074.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. L. Andrianopoli, S. Ferrara, E. Sokatchev, and B. Zupnik, “Shortening of primary operators in N-extended and harmonic superspace analyticity,” Adv. Theor. Math. Phys. 4, 1149 (2000); hepth/9912007.

    MathSciNet  MATH  Google Scholar 

  71. A. S. Galperin, E. A. Ivanov, and V. I. Ogievetsky, “Superspaces for N = 3 supersymmetry,” Sov. J. Nucl. Phys. 46, 543 (1987).

    MathSciNet  Google Scholar 

  72. B. U. W. Schwab and C. Vergu, “Twistors, harmonics and holomorphic Chern-Simons,” JHEP 1303, 046 (2013); arXiv:1301.1536 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. E. Ivanov, S. Kalitzin, Ai Viet Nguyen, and V. Ogievetsky, “Harmonic superspaces of extended supersymmetry. The calculus of harmonic variables,” J. Phys. A 18, 3433 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  74. I. L. Buchbinder, O. Lechtenfeld, and I. B. Samsonov, “N = 4 superparticle and super Yang-Mills theory in USp(4) harmonic superspace,” Nucl. Phys. B 802, 208 (2008); arXiv:0804.3063 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. V. P. Akulov, D. P. Sorokin, and I. A. Bandos, “Particle mechanics in harmonic superspace,” Mod. Phys. Lett. A 3, 1633 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  76. V. P. Akulov, I. A. Bandos, and D. P. Sorokin, “Particle in harmonic N = 2 superspace,” Sov. J. Nucl. Phys. 47, 724 (1988).

    MathSciNet  Google Scholar 

  77. I. L. Buchbinder and I. B. Samsonov, “N = 3 superparticle model,” Nucl. Phys. B 802, 180 (2008); arXiv:0801.4907 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  78. I. L. Buchbinder and N. G. Pletnev, “Towards harmonic superfield formulation of N = 4 SYM theory with central charge,” Nucl. Phys. B 877, 936 (2013); arXiv:1307.6300 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  79. I. A. Bandos, “Solution of linear equations in spaces of harmonic variables,” Theor. Math. Phys. 76, 783 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  80. G. G. Hartwell and P. S. Howe, “(N, p, q) harmonic superspace,” Int. J. Mod. Phys. A 10, 3901 (1995); hep-th/9412147.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  81. E. Ivanov and A. Sutulin, “Sigma models in (4,4) harmonic superspace,” Nucl. Phys. B 432, 246 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  82. E. Ivanov and A. Sutulin, “Erratum,” Nucl. Phys. B 483, 531 (1997); hep-th/9404098.

    Article  ADS  Google Scholar 

  83. E. A. Ivanov, “On the harmonic superspace geometry of (4,4) supersymmetric sigma models with torsion,” Phys. Rev. D 53, 2201 (1996); hep-th/9502073.

    Article  ADS  MathSciNet  Google Scholar 

  84. E. A. Ivanov, “Off-shell (4,4) supersymmetric sigma models with torsion as gauge theories in harmonic superspace,” Phys. Lett. B 356, 239 (1995); hepth/9504070.

    Article  ADS  MathSciNet  Google Scholar 

  85. S. Bellucci and E. Ivanov, “N = (4,4), 2-D supergravity in SU(2) × SU(2) harmonic superspace,” Nucl. Phys. B 587, 445 (2000); hep-th/0003154.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  86. E. Ivanov and A. Sutulin, “Diversity of off-shell twisted (4,4) multiplets in SU(2) × SU(2) harmonic superspace,” Phys. Rev. D 70, 045022 (2004); hepth/0403130.

    Article  ADS  MathSciNet  Google Scholar 

  87. S. Bellucci, E. Ivanov, and A. Sutulin, “N = 8 mechanics in SU(2)SU(2) harmonic superspace,” Nucl. Phys. B 722, 297 (2005).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  88. S. Bellucci, E. Ivanov, and A. Sutulin, “Erratum,” Nucl. Phys. B 747, 464 (2006); hep-th/0504185.

    Article  ADS  Google Scholar 

  89. E. Ivanov and J. Niederle, “Bi-harmonic superspace for N = 4 mechanics,” Phys. Rev. D 80, 065027 (2009); arXiv:0905.3770 [hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  90. I. L. Buchbinder, A. Yu. Petrov, and A. A. Tseytlin, “Two-loop N = 4 super Yang-Mills effective action and interacting D3-branes,” Nucl. Phys. B 621, 179 (2002); hep-th/0110173.

    Article  ADS  MATH  Google Scholar 

  91. S. M. Kuzenko, “Self-dual effective action of N = 4 SYM revisited,” JHEP 0503, 008 (2005); hepth/0410128.

    Article  ADS  MathSciNet  Google Scholar 

  92. I. Chepelev and A. A. Tseytlin, “Long distance interactions of branes: Correspondence between supergravity and super-Yang-Mills descriptions,” Nucl. Phys. B 515, 73 (1998); hep-th/9709087.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. F. Gonzalez-Rey, B. Kulik, I. Y. Park, and M. Rocek, “Selfdual effective action of N = 4 super-Yang-Mills,” Nucl. Phys. B 544, 218 (1999); hep-th/9810152.

    Article  ADS  MATH  Google Scholar 

  94. S. Bellucci, E. Ivanov, and S. Krivonos, “AdS/CFT equivalence transformation,” Phys. Rev. D 66, 086001 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  95. S. Bellucci, E. Ivanov, and S. Krivonos, Phys. Rev. D 67, 049901 (2003); hep-th/0206126.

    Article  ADS  MathSciNet  Google Scholar 

  96. S. M. Kuzenko and I. N. McArthur, “Relaxed superselfduality and N = 4 SYM at two loops,” Nucl. Phys. B 697, 89 (2004); hep-th/0403240.

    Article  ADS  MATH  Google Scholar 

  97. S. M. Kuzenko, I. N. McArthur, and S. Theisen, “Low-energy dynamics from deformed conformal symmetry in quantum 4D N = 2 SCFTs,” Nucl. Phys. B 660, 131 (2003); hep-th/0210007.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  98. D. Chicherin and E. Sokatchev, N = 4 Super-Yang- Mills in LHC Superspace, Part I: Classical and Quantum Theory; arXiv:1601.06803 [hep-th].

  99. D. Chicherin and E. Sokatchev, N = 4 Super-Yang- Mills in LHC superspace, Part II: Non-Chiral Correlation Functions of the Stress-Tensor Multiplet; arXiv:1601.06804 [hep-th].

  100. O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals,” JHEP 0810, 091 (2008); arXiv:0806.1218 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  101. J. Bagger and N. Lambert, “Modeling multiple M2’s,” Phys. Rev. D 75, 045020 (2007); hep-th/0611108.

    Article  ADS  MathSciNet  Google Scholar 

  102. J. Bagger and N. Lambert, “Gauge symmetry and supersymmetry of multiple M2-branes,” Phys. Rev. D 77, 065008 (2008); arXiv:0711.0955 [hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  103. A. Gustavsson, “Algebraic structures on parallel M2- branes,” Nucl. Phys. B 811, 66 (2009); arXiv:0709.1260 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  104. J. H. Schwarz, “Highly effective actions,” JHEP 1401, 088 (2014); arXiv:1311.0305 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  105. I. L. Buchbinder, E. A. Ivanov, O. Lechtenfeld, N. G. Pletnev, I. B. Samsonov, and B. M. Zupnik, “ABJM models in N = 3 harmonic superspace,” JHEP 0903, 096 (2009); arXiv:0811.4774 [hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  106. S. M. Kuzenko and I. B. Samsonov, “On superconformal Chern–Simons-matter theories in N = 4 superspace,” Phys. Rev. D 92, 105007 (2015); arXiv:1507.05377 [hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  107. I. L. Buchbinder and N. G. Pletnev, “Construction of 6D supersymmetric field models in N = (1, 0) harmonic superspace,” Nucl. Phys. B 892, 21 (2015); arXiv:1502.03257 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  108. I. L. Buchbinder and N. G. Pletnev, “Effective action in N = 1, D5 supersymmetric gauge theories: Harmonic superspace approach,” JHEP 1511, 130 (2015); arXiv:1510.02563 [hep-th].

    Article  ADS  MathSciNet  MATH  Google Scholar 

  109. G. Bossard, E. Ivanov, and A. Smilga, “Ultraviolet behavior of 6D supersymmetric Yang–Mills theories and harmonic superspace,” JHEP 1512, 085 (2015); arXiv:1509.08027 [hep-th].

    Article  ADS  MathSciNet  Google Scholar 

  110. I. L. Buchbinder, B. S. Merzlikin, N. G. Pletnev, Induced low-energy effective action in the 6D, N = (1,0) hypermultiplet theory on the vector multiplet background, Phys. Lett. B759, 621 (2016).

  111. I. L. Buchbinder, E. A. Ivanov, M. B. Merzlikin, K. V. Stepanyantz, One-loop divergences in the 6D, N = (1,0) abelian gauge theory. Phys. Lett. B 763, 375 (2016).

    Article  ADS  Google Scholar 

  112. I. L. Buchbinder, E. A. Ivanov, M. B. Merzlikin, K. V. Stepanyantz, One-loop divergences in the 6D, N = (1,0) SYM theory. JHEP 01, 128 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. L. Buchbinder.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchbinder, I.L., Ivanov, E.A. & Samsonov, I.B. The low-energy N = 4 SYM effective action in diverse harmonic superspaces. Phys. Part. Nuclei 48, 333–388 (2017). https://doi.org/10.1134/S1063779617030042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779617030042

Navigation