Skip to main content
Log in

Scintillation counters in modern high-energy physics experiments (Review)

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

Scintillation counters (SCs) based on organic plastic scintillators (OPSs) are widely used in modern high-energy physics (HEP) experiments. A comprehensive review is given to technologies for production of OPS strips and tiles (extrusion, injection molding, etc.), optical and physical characteristics of OPSs, and methods of light collection based on the use of wavelength-shifting (WLS) fibers coupled to multipixel vacuum and silicon PMs. Examples are given of the use of SCs in modern experiments involved in the search for quarks and new particles, including the Higgs boson (D0, CDF, ATLAS, CMS), new states of matter (ALICE), CP violation (LHCb, KLOE), neutrino oscillations (MINOS, OPERA), and cosmic particles in a wide mass and energy interval (AMS-02). Scintillation counters hold great promise for future HEP experiments (at the ILC, NICA, FAIR) due to properties of a high segmentation, WLS fiber light collection, and multipixel silicon PMT readout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. B. Birks, The Theory and Practice of Scintillation Counting (Pergamon Press, London, 1964);R. C. Ruchti, “The use of scintillating fibers for charged-particle tracking,” Ann. Rev. Nucl. Part. Sci. 46, 281–319 (1996); G. F. Knoll, Radiation Detection and Measurement (New York, 1989).

    Google Scholar 

  2. Yu. K. Akimov, Photon Methods of Radiation Detection (Dubna, 2014) [in Russian].

    Google Scholar 

  3. Yu. N. Kharzheev, “Modern trends in methods of charged particle identification at high energies,” Phys. Part. Nucl. 44(1), 115–157 (2013).

    Article  Google Scholar 

  4. T. O. White, “Scintillating fibers,” Nucl. Instrum. Meth. A 273, 820 (1988).

    Article  ADS  Google Scholar 

  5. V. G. Senchishin et al., “Manufacture and study of new polysterene scintillators,” Semicond. Phys., Quantum Electron. Optoelectron. 3(2), 223–226 (2000); V. G. Senchishin, “Modern technologies for production of plastic scintillators,” in Cutting and Machining Tools in Technological Systems (KhGPU, Kharkov, 2000), Vol. 57, pp. 205–816 [in Russian].

    Google Scholar 

  6. B. V. Grinev and V. G. Senchishin, Plastic Scintillators (Akta, Kharkov, 2003) [in Russian].

    Google Scholar 

  7. M. G. Kadykov, V. K. Semenov, and V. I. Suzdal’tsov, “Molded polystyrene plastic scintillator of the hadronic calorimeter of the “tagged neutrino facility”, Prib. Tekh. Eksp. 6, 95 (1992); Preprint OIYaI 13-90-16 (Joint Institute for Nuclear Research, Dubna, 1990).

    Google Scholar 

  8. S. P. Denisov, Beams of Tagged Neutrinos: New Step in Neutrino Investigation Methodology (MIFI, Moscow, 1987) [in Russian].

    Google Scholar 

  9. V. Semenov, Proceedings of IX Conf. on Scintillators (Kharkov, 1986), p. 86

    Google Scholar 

  10. IHEP, Protvino. http://www.ihep.ru/scint/bulk/product.htm; http://www.ihep.ru/scint/mold/product.htm.

  11. P. Adamson (The MINOS Collab.), “The MINOS Detectors: Technical Design Report,” NuMI-L-337 (1998).

    Google Scholar 

  12. A. Pla-Dalmau, A. D. Bross, and K. L. Mellott, “Low cost extruded plastic scintillator,” Nucl. Instrum. Meth. A 405, 422–431 (2001); A. Pla-Dalmau, A. D. Bross, and V. V. Rykalin, “Extruding Plastic Scintillator at Fermilab,” Fermilab-conf-03318-E.

    Google Scholar 

  13. D. G. Michael et al. (The MINOS Collab.), “The magnetized steel and scintillator calorimeters of the MINOS experiment,” Nucl. Instrum. Meth. A 596, 190–228 (2008).

    Article  ADS  Google Scholar 

  14. L. Aliaga et al. (The MINERvA Collab.), “Design, calibration and performance of the MINERvA detector,” arXiv:13055199v1.

  15. S. H. Chang, D. H. Kim, M. A. Khan, D. J. Kong, and J. S. Suh, “Production of extruded fine scintillator strips,” J. Korean Phys. Soc. 53(6), 3178–3181 (2008).

    Article  ADS  Google Scholar 

  16. V. B. Grinev, S. V. Mel’nichuk, V. G. Senchishin, A. F. Adadurov, V. N. Lebedev, and N. P. Khlapova, “Extruded scintillator strips for the OPERA experiment,” Vopr. At. Nauki Tekh., No. 4, 231–234 (2006).

    Google Scholar 

  17. R. Acquafredda et al. (The OPERA Collab.), “OPERA Proposal,” CERN/SPSC 038, 318 (2000).

    Google Scholar 

  18. N. Khlapova, Ya. Shpilevoy, V. Senchishyn, A. Gavrik, and V. Lebedev, “Light scattering in the plastic scintillator,” Funct. Mater. 14(2) (2007).

    Google Scholar 

  19. L. C. Renschler and L. A. Harrath, “Reduction of reabsorption effects in scintillators by employing solutes with large Stokes shifts,” Nucl. Instrum. Meth. A 235, 41–45 (1985).

    Article  ADS  Google Scholar 

  20. Ph. Rebourgeard et al., “Fabrication and measurements of plastic scintillating fibers,” Nucl. Instrum. Meth. A 427, 543–567 (1999).

    Article  ADS  Google Scholar 

  21. G. Kettenring, “Measurement of the reflectivities and absorption lengths at different wavelengths of plastic scintillator and acrylglass,” Nucl. Instrum. Meth. A 131, 451–456 (1975).

    Article  ADS  Google Scholar 

  22. E. N. Bellamy, G. Bellettini, J. Budagov, F. Cervelli, I. Chirikov-Zorin, V. Kovtun, V. Senchishin, M. Incagh, D. Lucchesi, C. Pagliarone, O. Pukhovc, V. Seminozhenko, S. Tokar, N. Verezub, I. Zaljubovsky, and F. Zettia, “Test of long scintillation counters for large supercollider detectors,” Nucl. Instrum. Meth. A 343, 484–488 (1994). E. N. Bellamy, G. Bellettini, J. Budagov, F. Cervelli, I. Chirikov-Zorin, M. Incagh, D. Lucchesi, C. Pagliarone, O. Pukhovc, V. Seminozhenko, S. Tokar, N. Verezub, I. Zaljubovsky, and F. Zettia “Calibration and monitoring of a spectrometric channel using a photomultiplier,” Nucl. Instrum. Meth. A 339, 468–476 (1994).

    Article  ADS  Google Scholar 

  23. A. Artikov, J. Budagov, I. Chirikov-Zorin, D. Chokheli, M. Lyablin, G. Bellettini, A. Menzione, S. Tokar, N. Giokaris, and A. Manousakis-Katsikakis, “Properties of the Ukraine polystyrene-based plastic scintillator UPS 923A,” Nucl. Instrum. Meth. A 555, 125–131 (2005).

    Article  ADS  Google Scholar 

  24. V. G. Senchishin, V. N. Lebedev, N. P. Khlapova, and A. F. Adadurov, “New radiation-hard plastic scintillator UPS-98H for hadronic calorimeters,” Vopr. At. Nauki Tekh., No. 3, 160–163 (2005).

    Google Scholar 

  25. S. Aota, T. Asakawa, K. Hara, et al., “A scintillating tile/fiber system for the CDF plug upgrade EM calorimeter,” Nucl. Instrum. Meth. A 352, 557–568 (1995).

    Article  ADS  Google Scholar 

  26. S. V. Melnichuk, “Dependence of light yield of scintillation strips on the reflective coating material kind,” Funct. Mater. 11(4) (2004).

    Google Scholar 

  27. E. Tarkovsky, “Performance of a scintillating strip detector with G-APD readout,” Nucl. Instrum. Meth. A 628, 372–375 (2011). Yu. V. Musienko, E. V. Akhromeev, A. Yu. Afanas’ev, G. B. Bondarenko, V. M. Golovin, E. N. Gushchin, N. V. Ershov, A. O. Izmailov, Yu. G. Kudenko, B. K. Lubsandorzhiev, V. A. Mayatskii, M. M. Khabibullin, A. N. Khotyantsev, and A. T. Shaikhiev, “Higly sensitive micropixel avalanche photodiodes for scintillation counters of near T2K experiment, ” www.itep.ru.

    Article  ADS  Google Scholar 

  28. A. Artikov, Yu. A. Budagov, V. B. Grinev, et al., “Scintillator plates of a new detector: development, production, and quality control”, Preprint OIYaI R13-2005-27 (Joint Institute for Nuclear Research, Dubna, 2005).

    Google Scholar 

  29. A. Schopper, “Overview of the LHCb calorimeter system,” Nucl. Instrum. Meth. A 623, 219–221 (2010).

    Article  ADS  Google Scholar 

  30. A. Artikov, J. Budagov, I. Chirikov-Zorin, et al., “Newgeneration large-area muon scintillation counters with wavelength shifter readout for CDF II,” Phys. Part. Nucl. Lett. 3(3), P. 188–200 (2006).

    Article  Google Scholar 

  31. Ju. Budagov, I. Chirikov-Zorin, M. Incagli, et al., Preprint OIYaI E13-2000-127 (Joint Institute for Nuclear Research, Dubna, 2000).

  32. V. I. Kolomoets, L. K. Lytkin, S. I. Merzlyakov, O. V. Mineev, Yu. N. Kharzheev, and G. A. Chlachidze, “Investigation of the time characteristics of the thin large sized scintillation counter”, Preprint OIYaI 13-88-216 (Joint Institute for Nuclear Research, Dubna, 1988) [in Russian].

    Google Scholar 

  33. Plastic Scintillating Fibers. http://kuraraypsf.jp.

  34. Organic Scintillation Materials. http://www.crystals.saint-gobain.com.

  35. B. M. Abazov et al. (D0 Collab.), “Upgraded D0 detector,” Nucl. Instrum. Meth. A 565, 463–532 (2006).

    Article  ADS  Google Scholar 

  36. B. M. Abazov et al. (D0 Collab.), “The muon system of the Run II D0 detector,” Nucl. Instrum. Meth. A 552, 372–398 (2005).

    Article  ADS  Google Scholar 

  37. M. D. Petroff and M. Atic, IEEE Trans. Nucl. Sci. NS-36, 158–163 (1986).

    Google Scholar 

  38. V. Abramov (D0 Collab.), “Technical Design Report for D0 forward trigger scintillation counters,” D0 Note 3237 (1997).

    Google Scholar 

  39. V. Bezzubov, D. Denisov, S. Denisov, H. T. Diehl, A. Dyshkant, V. Evdokimov, A. Galyaev, P. Goncharov, S. Gurzhiev, A. S. Ito, K. Johns, A. Kostritsky, A. Kozelov, and D. Stoianova, FERMILAB-Conf-98/020.

  40. MELZ, Electrozavodskaya str., 23, Moscow, Russia, 105023.

  41. S. Belikov et al., Instrum. Exp. Tech. 36, 390 (1993).

    Google Scholar 

  42. S. J. Cabrera et al. (CDF-II Collab.), “CDF-II Time-of-flight detector,” Nucl. Instrum. Meth. A 494, 416–423 (2002).

    Article  ADS  Google Scholar 

  43. S. V. Afanas’ev, L. Ya. Zhil’tsova, V. I. Kolesnikov, A. I. Malakhov, G. L. Melkumov, and A. Yu. Semenov, “Scintillation detectors for precise time measurements,” Kratk. Soobshch. OIYaI, No. 1[81]-97 (Joint Institute for Nuclear Research, Dubna, 1981).

    Google Scholar 

  44. NA-49 Collab., CERN SPSLC91-31 SPSLC/P264 (1991).

    Google Scholar 

  45. Yu. S. Anisimov et al. Kratk. Soobshch. OIYaI, No. 5[91]-98 (Joint Institute for Nuclear Research, Dubna, 1991) [in Russian].

    Google Scholar 

  46. A. Artikov et al. (CDF-II Collab.), “Design and construction of new central and forward muon counters for CDF-II,” Nucl. Instrum. Meth. A 538, 358–371 (2005).

    Article  ADS  Google Scholar 

  47. A. Artikov, O. E. Pukhov, G. A. Chlachidze, and D. Chokheli, “Scintillation counters of the muon system at CDF-II,” Phys. Part. Nucl. 39(3), 410–423 (2008).

    Article  Google Scholar 

  48. M. Callinara and A. Artikov, “A new scintillator tile/fiber preshower detector for the CDF central calorimeter,” IEEE Trans. Nucl. Sci. 52, 879–883 (2005).

    Article  Google Scholar 

  49. S. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).

    Article  ADS  Google Scholar 

  50. R. Wigmans, “Calorimetry,” Scientifica Acta 2(1), 18–55 (2008).

    Google Scholar 

  51. N. Akchurin and R. Wigmans, “Hadron calorimeters,” Nucl. Instrum. Meth. A 666, 80–97 (2012).

    Article  ADS  Google Scholar 

  52. ATLAS Collab., “The ATLAS experiment at the CERN Large Hadron Collider,” J. Instrum. 3, P. S08003 (2008); Eur. Phys. J. C 70, 1193–1236 (2010).

    Google Scholar 

  53. S. Ask et al. (ATLAS Collab.), “Luminosity measurement at ATLAS - development, construction and test of scintillating fiber prototype detectors,” Nucl. Instrum. Meth. A 568, 588–600 (2006).

    Article  ADS  Google Scholar 

  54. CMS Collab., “The CMS experiment at the CERN Large Hadron Collider,” J. Instrum. 3, S08004 (2008).

    Google Scholar 

  55. LHCb Collab., “The Large Hadron Collider beauty experiment at the CERN Large Hadron Collider,” J. Instrum. 3, S08005 (2008); R. I. Dzhelyadin, “The LHCb hadron calorimeter,” Nucl. Instrum. Meth. A 494, 332–339 (2002).

    Google Scholar 

  56. G. S. Atoian, G. I. Britvich, S. K. Chernichenko, S. Dhawanc, V. V. Issakova, O. V. Karavicheva, T. L. Karavicheva, V. N. Marin, A. A. Poblaguev, I. V. Shein, A. P. Soldatov, and M. E. Zeller, “An improved shashlik calorimeter,” Nucl. Instrum. Meth. A 584, 291–303 (2008).

    Article  ADS  Google Scholar 

  57. J. Allen et al. (ALICE ECAL Collab.), “Performance of prototype for ALICE electromagnetic calorimeter,” Nucl. Instrum. Meth. A 615, 6–13 (2010).

    Article  ADS  Google Scholar 

  58. I. E. Chirikov-Zorin, Z. Krumstein, A. Olshevsky, V. Utkin, and P. Zhmurin, Preprint OIYaI E13-2013-82 (Joint Institute for Nuclear Research, Dubna, 2013); N. Anfimov, I. Chirikov-Zorin, A. Dovlatov, O. Gavrishchuk, A. Guskov, N. Khovanskiy, Z. Krumshtein, R. Leitner, G. Meshcheryakov, A. Nagaytsev, A. Olchevski, T. Rezinko, A. Sadovskiy, Z. Sadygov, I. Savin, V. Tchalyshev, I. Tyapkin, G. Yarygin, and F. Zerrouk, Beam test of Shashlik EM calorimeter prototypes readout by Novel MAPD with superhigh linearity,” Nucl. Instrum. Meth. A 617, 78–80 (2010): N. Anfimov, V. Anosov, I. Chirikov-Zorin, D. Fedoseev, O. Gavrishyk, N. Khovanskiy, Z. Krumshtein, R. Leitner, G. Meshcheryakov, A. Nagaitsev, A. Olshevski, T. Rezinko, A. Selyunin, A. Rybnikov, Z. Sadygov, I. Savin, V. Tchalyshev, P. Zhmurin, “Shashlik EM calorimeter prototype readout by MAPD with superhigh pixel density for COMPASS II,” Nucl. Instrum. Meth. A 718, 75–77 (2013).

    Google Scholar 

  59. Kh. U. Abraamyan et al. (NICA Collab.), “MPD detector at the NICA heavy-ion collider at JINR,” Nucl. Instrum. Meth. A 628, 99–102 (2011).

    Article  ADS  Google Scholar 

  60. P. Sonderegger, “Fibre calorimeters: dense, fast, radiation,” Nucl. Instrum. Meth. A 257, 523–527 (1987); D. W. Hertzog, P. T. Debevec, R. A. Eisenstein, M. A. Graham, S. A. Hughes, P. E. Reimer, and R. L. Tayloe, “A high-resolution lead /scintillating fiber electromagnetic calorimeter” Nucl. Instrum. Meth. A 294, 446–458 (1990); S. A. Sedykh, et al. (BNL (g-2) Collab.), “Electromagnetic calorimeters for the BNL muon (g-2) experiment,” Nucl. Instrum. Meth. A 455, 346 (2000).

    Article  ADS  Google Scholar 

  61. J. Budagov, I. Chirikov-Zorin, V. Glagolev, A. Jordanov, Yu. Kharzheev, et al. “Energy resolution of a lead scintillating fiber electromagnetic calorimeter,” Nucl. Instrum. Meth. A 343, 476–483 (1994).

    Article  ADS  Google Scholar 

  62. M. Adinolfi et al. (KLOE Collab.), “The KLOE electromagnetic calorimeter,” Nucl. Instrum. Meth. A 482, 364 (2002).

    Article  ADS  Google Scholar 

  63. R. McNabb et al., “A tungsten/scintillating fiber electromagnetic calorimeter prototype for a high-rate muon (g-2) experiment,” Nucl. Instrum. Methods 602, 396–402 (2009).

    Article  ADS  Google Scholar 

  64. A. Lucottea, S. Bondila, K. Borer, et al., “A front-end read out chip for the OPERA scintillator tracker,” Nucl. Instrum. Meth. A 521, 378–392 (2004).

    Article  ADS  Google Scholar 

  65. D. Casadei et al. (AMS-02 Collab.), “The AMS-02 time of flight system,” Nucl. Phys. B. (Proc. Suppl.) 113, 133–138 (2002); V. Bindi, A. Contin, N. Masi, A. Oliva, F. Palmonari, L. Quadrani, and A. Tiseni, “The time of flight detector of the AMS-02 experiment on the International Space Station,” Nucl. Instrum. Meth. A 718, 478–480 (2013).

    Article  ADS  Google Scholar 

  66. C. Aldloff et al. (AMS-02 Collab.), “The AMS-02 lead-scintillating fibers electromagnetic calorimeter,” Nucl. Instrum. Meth. A 714, 147–154 (2013).

    Article  ADS  Google Scholar 

  67. R. A. Montgomery, E. N. Cowie, M. Hoek, T. Keri, and B. Seitz, “Multianode photomultiplier tube studies for imaging applications,” Nucl. Instrum. Meth. A 695, 326–329 (2012).

    Article  ADS  Google Scholar 

  68. K. K. Hamamatsu, Photonics. http://www.hamamatsu.com/index.html.

  69. N. A. Bajanov, Yu. S. Blinnikov, Yu. I. Gusev, et al., “Fine-mesh photodetectors for CMS endcap electromagnetic calorimeter,” Nucl. Instrum. Meth. A 442, 146–149 (2000).

    Article  ADS  Google Scholar 

  70. B. Adeva et al. (L3 Collab.), “The construction of the L3 experiment,” Nucl. Instrum. Meth. A 289, 35 (1990).

    Article  ADS  Google Scholar 

  71. Shiizuka Susumu, Adachi Ichiro, Dolenec Rok, et al. “Study of 144-channel hybrid avalanche photo detector for Belle II RICH counter,” Nucl. Instrum. Meth. A. 628, 315–318 (2011).

    Article  ADS  Google Scholar 

  72. P. Cushman, A. Heering, and A. Ronzhin, “Custom HPD readout for the CMS HCAL,” Nucl. Instrum. Meth. A 442, 289 (2000).

    Article  ADS  Google Scholar 

  73. D. Renker, “Properties of avalanche photodiodes for applications in high energy physics, astrophysics and medical imaging,” Nucl. Instrum. Meth. A 486, 164–169 (2002); K. Deiters, Q. Ingram, Y. Musienko, et al., “Properties of the avalanche photodiodes for the CMS electromagnetic calorimeter,” Nucl. Instrum. Meth. A 453, 223 (2000).

    Article  ADS  Google Scholar 

  74. V. Golovin, M. Tarasov, and G. Bondarenko, Patent No. RU 2142175 (1998).

  75. Z. Sadygov, Patent No. RU 2102820 (1998).

  76. P. Buzhan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kantzerov, V. Kaplin, A. Karakash, F. Kayumov, S. Klemin, E. Popova, and S. Smirnov, “Silicon photomultiplier and its possible applications,” Nucl. Instrum. Meth. A 504, 48–52 (2003).

    Article  ADS  Google Scholar 

  77. A. Bross, E. Flattum, D. Lincoln, S. Grunendahl, J. Warchol, M. Wayne, and P. Padley, “Characterization and performance of visible light photon counters (VLPCs) for the upgraded D0 detector at the Fermilab Tevatron,” Nucl. Instrum. Meth. A 477, 172 (2002).

    Article  ADS  Google Scholar 

  78. E. Albrecht, M. Alemi, G. Barber, J. Bibby, M. Campbell, A. Duane, T. Gys, J. Montenegro, D. Piedigrossi, R. Schomaker, W. Snoeys, S. Wotton, and K. Wyllie, “Performance of hybrid photon detector prototypes with 80% active area for the RICH counters of LHCb,” Nucl. Instrum. Meth. A 442, 164 (2000).

    Article  ADS  Google Scholar 

  79. B. Dolgoshein et al. (Calice/SiPM Collab.), “Status report on silicon photomultiplier development and its applications,” Nucl. Instrum. Meth. A 563, 368–378 (2006).

    Article  ADS  Google Scholar 

  80. Y. Musienko, “Advances in multipixel geiger-mode avalanche photodiodes (silicon photomultiples),” Nucl. Instrum. Meth. A 598, 213–216 (2009).

    Article  ADS  Google Scholar 

  81. P. Bushan, B. Dolgoshein, L. Filatov, A. Ilyin, V. Kaplin, A. Karakash, S. Klemin, R. Mirzoyan, A. N. Otte, E. Popova, V. Sosnovtsev, and M. Teshima, “Large area silicon photomultipliers: performance and applications,” Nucl. Instrum. Meth. A 567, 78–82 (2006).

    Article  ADS  Google Scholar 

  82. B. Dolgoshein, R. Mirzoyan, E. Popova, P. Buzhan, A. Ilyin, V. Kaplin, A. Stifutkin, M. Teshima, and A. Zhukov, “Large area UV SiPM with extremely low crosstalk,” Nucl. Instrum. Meth. A 695, 40–43 (2012).

    Article  ADS  Google Scholar 

  83. A. Akindinov, G. Bondarenko, V. Golovin, E. Grigoriev, Yu. Grishuk, D. Mal’kevich, A. Martemiyanov, M. Ryabinin, A. Smirnitskiy,K. and K. Voloshin, “Scintillator counter with MRS APD light readout,” Nucl. Instrum. Meth. A 539, 172–176 (2005).

    Article  ADS  Google Scholar 

  84. Z. Sadygov, A. Olshevski, I. Chirikov, I. Zheleznykh, and A. Novikov, “Three advanced designs of micropixel avalanche photodiodes: their present status, maximum possibilities and limitations,” Nucl. Instrum. Meth. A 567, 70–73 (2006); Z. Sadygov, A. Ol’shevskii, N. Anfimov, T. Bokova, A. Dovlatov, V. Zhezher, Z. Krumshtein, R. Mekhtieva, R. Mukhtarov, M. Troitskaya, V. Chalyshev, I. Chirikov-Zorin, and V. Shukurova, “Microchannel avalanche photodiode with a wide linearity range,” Pis’ma Zh. Tekh. Fiz. 36 (1), 83–89 (2010).

    Article  ADS  Google Scholar 

  85. D. Renker and E. Lorentz, “Advances in solid state photon detectors,” J. Instrum. 4, 04004 (2009).

    Article  Google Scholar 

  86. M. Danilov (CALICE Collab.), “Scintillator tile hadron calorimeter with novel SiPM readout,” Nucl. Instrum. Meth. A 581, 451 (2007).

    Article  ADS  Google Scholar 

  87. E. Garutti, “Silicon photomultipliers for high energy physics detectors,” arXiv:1108.3166v2.

  88. K. Francis, “Performance of the first prototype of the CALICE scintillator strip electromagnetic calorimeter,” Nucl. Instrum. Meth. A 763, 278 (2014).

    Article  ADS  Google Scholar 

  89. M. Yokoyama, T. Nakaya, S. Gomi, et al., “Application of Hamamatsu MPPCs to T2K neutrino detectors,” Nucl. Instrum. Meth. A 610, 128–130 (2009).

    Article  ADS  Google Scholar 

  90. D. Allan et al. (T2K ND280 Collab.), “The electromagnetic calorimeter for the T2K near detector ND280,” arXive:1308.3445v2.

  91. R. M. Carey et al. (Mu2e Collab.), Fermilab Proposal 0973 (2008); Craig Group and Yuri Okgruzian (Mu2e Collab.), “Design consideration for the cosmic-rayveto system of the Mu2e experiment at Fermilab,” arXiv:1377v1.

    Google Scholar 

  92. V. Puill, C. Bazin, D. Breton, L. Burmistrov, V. Chaumat, N. Dinu, J. Maalmi, J. F. Vagnucci, and A. Stocchi, “Single photoelectron timing resolution of SiPM as a function of the bias voltage, the wavelength and the temperature,” Nucl. Instrum. Meth. A 685, 354–358 (2012).

    Article  ADS  Google Scholar 

  93. A. Stoykov, R. Scheuermann, and K. Sedlak, “A time resolution study with a plastic scintillator read out by a Geiger-mode avalanche photodiode,” Nucl. Instrum. Meth. A 695, 202–205 (2012).

    Article  ADS  Google Scholar 

  94. P. W. Cattaneo, M. De Gerone, F. Gatti, M. Nishimura, W. Ootani, M. Rossella, and Y. Uchiyama, “Development of high precision timing counter based on plastic scintillator with SiPM readout,” arXiv:1402.1404v2.

  95. J. Va’vra, D. W. G. S. Leith, B. Ratcliff, E. Ramberg, M. Albrow, A. Ronzhin, C. Ertley, T. Natoli, E. May, and K. Byrum, Nucl. Instrum. Meth. A 606, 404 (2009).

    Article  ADS  Google Scholar 

  96. V. Puill, Proceedings of the IEEEN55 Conference, Anaheim, 2012.

  97. B. Lewandowski, “Fast and compact ECAL for the PANDA detector at GSI,” Nucl. Instrum. Meth. A 537, 349 (2005).

    Article  ADS  Google Scholar 

  98. J. Beringer et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).

    Article  ADS  Google Scholar 

  99. D. Chakraborty and T. Sumiyoshi, “Review of Particle Physics. 31.2. Photon detectors;” Phys. Rev. D 86, 010001 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Kharzheev.

Additional information

Original Russian Text © Yu.N. Kharzheev, 2015, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2015, Vol. 46, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kharzheev, Y.N. Scintillation counters in modern high-energy physics experiments (Review). Phys. Part. Nuclei 46, 678–728 (2015). https://doi.org/10.1134/S1063779615040048

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779615040048

Keywords

Navigation