Skip to main content
Log in

Tin Anomaly in Coulomb Energies and Analog Resonances of Neutron-Rich Tin Isotopes

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

An anomaly in the distribution of Coulomb energies of tin isotopes (Sn anomaly) is determined. This anomaly manifests itself as follows: in the mass-number (\(A\)) dependence of \(\Delta E_{\mathrm{C}}A^{1/3}\) for the isotopes \({}^{\mathrm{112-132}}\)Sn, experimental data on \(\Delta E_{\mathrm{C}}\) show a linear dependence close to a constant. The Coulomb energy difference \(\Delta E_{\mathrm{C}}(A,Z)\) between the Sn–Sb neighboring isobaric nuclei is approximated by a two-parameter expression. The energies of isobaric analog resonances, \(E_{\mathrm{AR}}\), for the isotopes \({}^{\mathrm{110-140}}\)Sn are calculated both on the basis of the resulting approximation within a phenomenological model and on the basis of the microscopic theory of finite Fermi systems. The results are compared with experimental data on \(E_{\mathrm{AR}}\), and it is found that the phenomenological model describes the energies \(E_{\mathrm{AR}}\) quite accurately, and so do the new self-consistent relativistic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev. 126, 2170 (1962).

    Article  ADS  Google Scholar 

  2. A. M. Lane and J. M. Soper, Nucl. Phys. 37, 663 (1962).

    Article  Google Scholar 

  3. A. M. Lane, Nucl. Phys. 35, 676 (1962).

    Article  Google Scholar 

  4. J. I. Fujita and K. Ikeda, Nucl. Phys. 67, 145 (1965).

    Article  Google Scholar 

  5. J. I. Fujita, S. Fujii, and K. Ikeda, Phys. Rev. 133, B549 (1964).

    Article  Google Scholar 

  6. A. B. Migdal, Theory of Finite Fermi Systems and Applications to Atomic Nuclei (Nauka, Moscow, 1983, 2nd ed.; Interscience, New York, 1967, transl. 1st ed.).

  7. D. F. Zaretskiĭ and M. G. Urin, Sov. Phys. JETP 26, 217 (1967).

    ADS  Google Scholar 

  8. Yu. V. Gaponov and Yu. S. Lyutostanskiĭ, Sov. J. Nucl. Phys. 16, 270 (1972).

    Google Scholar 

  9. I. N. Borzov and S. V. Tolokonnikov, Phys. At. Nucl. 82, 560 (2019).

    Article  Google Scholar 

  10. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 79, 1030 (2016).

    Article  Google Scholar 

  11. N. Paar, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev. 69, 054303 (2004).

    Article  ADS  Google Scholar 

  12. D. Vale, Y. F. Niu, and N. Paar, Phys. Rev. C 103, 064307 (2021); arXiv: 2012.11977 v2 [nucl-th] (2021).

  13. P. N. Huan, N. L. Anh, B. M. Loc, and I. Vidaña, Phys. Rev. C 103, 024601 (2021).

    Article  Google Scholar 

  14. K. Pham, J. Jänecke, D. A. Roberts, M. N. Harakeh, G. P. A. Berg, S. Chang, J. Liu, E. J. Stephenson, B. F. Davis, H. Akimune, and M. Fujiwara, Phys. Rev. C 51, 526 (1995).

    Article  ADS  Google Scholar 

  15. J. Yasuda, M. Sasano, R. G. T. Zegers, et al., Phys. Rev. Lett. 121, 132501 (2018).

    Article  ADS  Google Scholar 

  16. Yu. S. Lutostansky and V. N. Tikhonov, Bull. Acad. Sci.: Phys. 79, 425 (2015).

    Google Scholar 

  17. Yu. S. Lutostansky, Phys. At. Nucl. 83, 33 (2020).

    Article  Google Scholar 

  18. Yu. S. Lutostansky, EPJ Web Conf. 194, 02009 (2018).

  19. A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. 1: Single-Particle Motion, (Benjamin, New York, 1969).

    MATH  Google Scholar 

  20. P. Danielewicz, Nucl. Phys. A 727, 233 (2003).

    Article  ADS  Google Scholar 

  21. J. Dong, H. Zhang, L. Wang, and W. Zuo, Phys. Rev. C 88, 014302 (2013).

    Article  ADS  Google Scholar 

  22. J. Jänecke, Z. Phys. 160, 171 (1960);

    Article  ADS  Google Scholar 

  23. J. Jänecke, F. D. Becchetti, A. M. van Berg, G. P. A. Berg, G. Brouwer, M. B. Greenfield, M. N. Harakeh, M. A. Hofstee, A. Nadasen, D. A. Roberts, R. Sawafta, J. M. Schippers, E. J. Steohenson, D. P. Stewart, and S. Y. van der Werf, Nucl. Phys. A 526, 1 (1991).

    Article  ADS  Google Scholar 

  24. J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev. B 138, 615 (1965).

    Article  ADS  Google Scholar 

  25. M. S. Antony, A. Pape, and J. Britz, At. Data Nucl. Data Tables 66, 1 (1997).

    Article  ADS  Google Scholar 

  26. M. Wang, W. J. Huang, F. G. Kondev, G. Audi, and S. Naimi, Chin. Phys. C 45, 030003 (2021).

    Article  ADS  Google Scholar 

  27. J. Kvasil, V. O. Nesterenko, W. Kleinig, D. Božík, and P.-G. Reinhard, Int. J. Mod. Phys. E 20, 281 (2011).

    Article  ADS  Google Scholar 

  28. Yu. S. Lutostansky, Phys. At. Nucl. 74, 1176 (2011).

    Article  Google Scholar 

  29. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A 355, 117 (1996).

    ADS  Google Scholar 

  30. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  31. S. A. Fayans, JETP Lett. 68, 169 (1998).

    Article  ADS  Google Scholar 

  32. I. N. Borzov and S. V. Tolokonnikov, private communication (2022).

  33. J. Wu, S. Nisihimura, P. Möller, M. R. Mumpower, R. Lozeva, C. B. Moon, A. Odahara, H. Baba, F. Browne, R. Daido, P. Doornenbal, Y. F. Fang, M. Haroon, T. Isobe, H. S. Jung, G. Lorusso, et al., arXiv: 2004.00119v1 [nucl-ex] (2020).

  34. Yu. V. Gaponov and Yu. S. Lutostansky, Sov. J. Nucl. Phys. 19, 33 (1974).

    Google Scholar 

  35. Yu. S. Lutostansky, JETP Lett. 106, 7 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to I.N. Borzov, A.N. Fazliakhmetov, G.A. Koroteev, V.N. Tikhonov, and S.V. Tolokonnikov for discussions and help in work.

Funding

This work was supported in part by a grant from National Research Center Kurchatov Institute (order no. 2767 of October, 28, 2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Lutostansky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutostansky, Y.S. Tin Anomaly in Coulomb Energies and Analog Resonances of Neutron-Rich Tin Isotopes. Phys. Atom. Nuclei 86, 205–213 (2023). https://doi.org/10.1134/S1063778823030134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778823030134

Navigation