Skip to main content
Log in

Analytical \(\boldsymbol{\alpha}\boldsymbol{+}\boldsymbol{\alpha}\) Potential for Energy Range between 6 and 280 MeV

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

In this work we derive analytically a real \(\alpha+\alpha\) potential using the JLM effective nucleon–nucleon (NN) interaction. The aim is to obtain analytically self-energy dependent \(\alpha+\alpha\) effective interaction. We used two different overlapping local density approximations, (geometrical and arithmetic averages, respectively) in JLM parameterization. The derived real potentials in companion with phenomenological Wood–Saxon (WS) imaginary potential are tested in the analysis of the elastic scattering of \(\alpha+\alpha\), over a wide range of energy and angular distribution. The analysis is performed in the framework of optical model for several sets of data measured at three different ranges of energies, 6.5–18, 40.8–47.3, and 100–280 MeV. The predictions of the calculated potentials are satisfactory in reproduction of experimental data. We conclude that both analyticaly derived potentials provide successful description of the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. T. Furumoto and Y. Sakuragi, Phys. Rev. C 74, 034606 (2006). https://link.aps.org/doi/10.1103/PhysRevC.74.034606

    Article  ADS  Google Scholar 

  2. J. S. McCarthy, I. Sick, and R. R. Whitney, Phys. Rev. C 15, 1396 (1977). https://link.aps.org/doi/10.1103/PhysRevC.15.1396

    Article  ADS  Google Scholar 

  3. P. E. Hodgson, Z. Phys. 349, 197 (1994). https://doi.org/10.1007/BF01288959

    Article  ADS  Google Scholar 

  4. Jun Hiura and Ryozo Tamagaki, Prog. Theor. Phys. Suppl. 52, 25 (1972). http://dx.doi.org/10.1143/PTPS.52.25

    Article  ADS  Google Scholar 

  5. M. Rahman, D. Husain, and S. Ali, Phys. Rev. C 10, 1 (1974). https://link.aps.org/doi/10.1103/PhysRevC.10.1

    Article  ADS  Google Scholar 

  6. Albert Lumbroso, Phys. Rev. C 10, 1271 (1974). https://link.aps.org/doi/10.1103/PhysRevC.10.1271

    Article  ADS  Google Scholar 

  7. Ronald E. Brown and Y. C. Tang, Phys. Rev. C 14, 1675 (1976). https://link.aps.org/doi/10.1103/PhysRevC.14.1675

  8. J. Thaler, Phys. Rev. C 32, 2189 (1985). https://link.aps.org/doi/10.1103/PhysRevC.32.2189

  9. N. P. Heydenburg and G. M. Temmer, Phys. Rev. 104, 123 (1956). https://link.aps.org/doi/10.1103/PhysRev.104.123

    Article  ADS  Google Scholar 

  10. T. A. Tombrello and L. S. Senhouse, Phys. Rev. 129, 2252 (1963). https://link.aps.org /doi/10.1103/PhysRev.129.2252

    Article  ADS  Google Scholar 

  11. Luis Marquez, Phys. Rev. C 28, 2525 (1983). https://link.aps.org/doi/10.1103/PhysRevC.28.2525

    Article  ADS  Google Scholar 

  12. V. G. Neudatchin, V. I. Kukulin, V. L. Korotkikh, and V. P. Korennoy, Phys. Lett. B 34, 581 (1971). http://www.sciencedirect.com/science/article/pii/0370269371901420.

  13. B. Buck, H. Friedrich, and C. Wheatley, Nucl. Phys. A 275, 246 (1977). http://www.sciencedirect.com/science/article/pii/0375947477902871.

  14. P. Darriulat, G. Igo, H. G. Pugh, and H. D. Holmgren, Phys. Rev. 137, B315 (1965). https://link.aps.org/doi/10.1103/PhysRev.137.B315

    Article  ADS  Google Scholar 

  15. A. Nadasen, P. G. Roos, B. G. Glagola, G. J. Mathews, V. E. Viola, H. G. Pugh, and P. Frisbee, Phys. Rev. C 18, 2792 (1978). https://link.aps.org/doi/10.1103/PhysRevC.18.2792

    Article  ADS  Google Scholar 

  16. A. A. Cowley, G. F. Steyn, S. V. For̈tsch, J. J. Lawrie, J. V. Pilcher, F. D. Smit, and D. M. Whittal, Phys. Rev. C 50, 2449 (1994). https://link.aps.org/doi/10.1103/PhysRevC.50.2449

  17. G. F. Steyn, S. V. For̈tsch, J. J. Lawrie, F. D. Smit, R. T. Newman, A. A. Cowley, and R. Lindsay, Phys. Rev. C 54, 2485 (1996). https://link.aps.org/doi/10.1103/PhysRevC.54.2485

  18. G. F. Steyn, S. V. For̈tsch, A. A. Cowley, S. Karataglidis, R. Lindsay, J. J. Lawrie, F. D. Smit, and R. T. Newman, Phys. Rev. C 57, 1817 (1998). https://link.aps.org/doi/10.1103/PhysRevC.57.1817

  19. K. A. G. Rao, A. Nadasen, D. Sisan, W. Yuhasz, D. Mercer, Sam M. Austin, P. G. Roos, and R. E. Warner, Phys. Rev. C 62, 014607 (2000). https://link.aps.org/doi/10.1103/PhysRevC.62.014607.14

  20. E. W. Schmid and K. Wildermuth, Nucl. Phys. 26, 463 (1961). http://www.sciencedirect.com/science/article/pii/0029558261901055.

  21. G. R. Satchler and W. G. Love, Phys. Rep. 55, 183 (1979). http://www.sciencedirect.com/science/article/pii/0370157379900814.

  22. M. Avrigeanu, W. von Oertzen, A. J. M. Plompen, and V. Avrigeanu, Nucl. Phys. A 723, 104 (2003).

    Article  ADS  Google Scholar 

  23. F. E. Steigert and M. B. Sampson, Phys. Rev. 92, 660 (1953). https://link.aps.org /doi/10.1103/PhysRev.92.660

    Article  ADS  Google Scholar 

  24. W. S. Chien and Ronald E. Brown, Phys. Rev. C 10, 1767 (1974). https://link.aps.org/doi/10.1103/PhysRevC.10.1767

    Article  ADS  Google Scholar 

  25. M. El-Azab Farid, Phys. Rev. C 74, 064616 (2006). https://link.aps.org/doi/10.1103/PhysRevC.74.064616

  26. J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rev. C 16, 80 (1977). https://link.aps.org/doi/10.1103/PhysRevC.16.80

    Article  ADS  Google Scholar 

  27. M. N. A. Abdullah, M. S. Sabra, M. M. Rashid, Z. Shehadeh, M. M. Billah, S. K. Das, M. A. Uddin, A. K. Basak, I. Reichstein, H. M. Sen Gupta, and F. B. Malik, Nucl. Phys. A 775, 1 (2006). http://doi:10.1016/j.nuclphysa.2006.06.007

    Article  ADS  Google Scholar 

  28. Zakaria M. M. Mahmoud, Awad A. Ibraheem, and M. El-Azab Farid, J. Phys. Soc. Japan 81, 124201 (2012). https://doi.org/10.1143/JPSJ.81.124201

    Article  ADS  Google Scholar 

  29. J. S. Al-Khalili, J. A. Tostevin, and I. J. Thompson, Phys. Rev. C 54, 1843 (1996). https://link.aps.org/doi/10.1103/PhysRevC.54.1843

    Article  ADS  Google Scholar 

  30. N. M. Clarke, Hi-OPTIM94.2 code Univ. of Birmingham, private communication.

  31. T. Furumoto, Y. Sakuragi, and Y. Yamamoto, Phys. Rev. C 90, 041601 (2014). https://link.aps.org/doi/10.1103/PhysRevC.90.041601

  32. T. Furumoto, Y. Sakuragi, and Y. Yamamoto, Phys. Rev. C 94, 044620 (2016). https://link.aps.org/doi/10.1103/PhysRevC.94.044620

Download references

ACKNOWLEDGMENTS

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant no. R.G.P.1/124/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zakaria M. M. Mahmoud.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoud, Z.M., Hassanien, M.A. Analytical \(\boldsymbol{\alpha}\boldsymbol{+}\boldsymbol{\alpha}\) Potential for Energy Range between 6 and 280 MeV. Phys. Atom. Nuclei 83, 418–430 (2020). https://doi.org/10.1134/S106377882003014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882003014X

Navigation