Skip to main content
Log in

Search for Albedo Tritium with PAMELA Experiment

  • Elementary Particles and Fields
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Particles of albedo radiation are the particles born in interactions of primary cosmic rays penetrating inside Earth’s atmosphere and magnetosphere and the atmosphere nuclei. These interactions result in so-called particle showers and the detection of these showers is the essence of work for ground-based cosmic-ray detectors such as neutron monitors, muon hodoscopes and EAS arrays. Some products of these interactions undergoing by scattering and having the curve paths in geomagnetic field propagate upwards to the boundary of Earth’s magnetosphere. These particles are called albedo particles. The principle of their identification is simple. They are registered in geomagnetic zones where the penetration of low-energy galactic or solar cosmic rays is restricted due to Earth’s magnetic field. The results of measurements of albedo protons, deuterons, electrons and positrons has been already published by PAMELA collaboration. In this work the first approach to search for the albedo tritium nuclei with energies above 100 MeV/nucleon is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Looper, J. B. Blake, J. R. Cummings, and R. A. Mewaldt, Radiat. Meas. 26, 967 (1996).

    Article  Google Scholar 

  2. M. D. Looper, J. B. Blake, and R. A. Mewaldt, Adv. Space Res. 21, 1679 (1998).

    Article  ADS  Google Scholar 

  3. A. Bakaldin, A. Galper, S. Koldashov, M. Korotkov, A. Leonov, V. Mikhailov, A. Murashov, S. Voronov, V. Bidoli, M. Casolino, M. De Pascale, G. Furano, A. Iannucci, A. Morselli, P. Picozza, R. Sparvoli, et al., J. Geophys. Res. Space Phys. 107, SMP 8–1 (2002).

    Article  Google Scholar 

  4. V. Bidoli, M. Casolino, M. De Pascale, G. Furano, A. Iannucci, A. Morselli, P. Picozza, R. Sparvoli, A. Bakaldin, A. Galper, S. Koldashov, M. Korotkov, A. Leonov, V. Mikhailov, S. Voronov, M. Boezio, et al., J. Geophys. Res. 108, SMP 20–1 (2003).

    Article  Google Scholar 

  5. O. Adriani, G. C. Barbarino, G. A. Bazilevskaya, R. Bellotti, M. Boezio, E. A. Bogomolov, M. Bongi, V. Bonvicini, S. Bottai, A. Bruno, F. Cafagna, D. Campana, R. Carbone, P. Carlson, M. Casolino, G. Castellini, et al., Phys. Rep. 544, 323 (2014).

    Article  ADS  Google Scholar 

  6. S. A. Voronov, I. A. Danil’chenko, and S. A. Koldobsky, Instrum. Exp. Tech. 54, 752 (2011).

    Article  Google Scholar 

  7. L. Derome and M. Buténerd, Phys. Lett. B 521, 139 (2001).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the grant no. MK-6160.2018.2 of the President of the Russian Federation and MEPhI Academic Excellence Project (contract 02.a03.21.0005) as well as Ministry of Science and Higher Education RF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Koldobskiy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koldobskiy, S.A., Voronov, S.A. Search for Albedo Tritium with PAMELA Experiment. Phys. Atom. Nuclei 82, 744–746 (2019). https://doi.org/10.1134/S106377881966030X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881966030X

Navigation